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Abstract. Pre-disaster planning and mitigation necessitates detailed spatial information about �ood hazards and their associated

risks. In the U.S., the FEMA Special Flood Hazard Area (SFHA) provides important information about areas subject to �ooding

during the 1% riverine or coastal event. The binary nature of �ood hazard maps obscures the distribution of property risk inside

of the SFHA and the residual risk outside of the SFHA, which can undermine mitigation efforts. Machine-learning techniques5

provide an alternative approach to estimating �ood hazards across large spatial scales at low computational expense. This

study presents a pilot study for the Texas Gulf Coast Region using Random Forest Classi�cation to predict �ood probability

across a 30,523 km2 area. Using a record of National Flood Insurance Program (NFIP) claims dating back to 1976 and high-

resolution geospatial data, we generate a continuous �ood hazard map for twelve USGS HUC-8 watersheds. Results indicate

that the Random Forest model predicts �ooding with a high sensitivity (AUC 0.895), especially compared to the existing10

FEMA regulatory �oodplain. Our model identi�es 649,000 structures with at least a 1% annual chance of �ooding, roughly

three times more than are currently identi�ed by FEMA as �ood prone.

1 Introduction

In the US, pluvial and �uvial �ood events are some of the most damaging environmental hazards, averaging$3.7 billion

annually, totaling over$1.5 trillion in total losses since 1980 (for Environmental Information , NCEI). This trend represents15

an increase of about 15% in �ood losses per year since 2002, despite large scale efforts to mitigate losses over the same

period (Kousky and Shabman, 2017). To offset the rising costs associated with extreme �ood events, pre-disaster planning and

mitigation necessitates detailed spatial information about �ood hazards and their associated risks.

In the US, the Federal Emergency Management Agency (FEMA) Special Flood Hazard Area (SFHA) – the area of inundation

associated with a 1% annual exceedance probability – provides a basis for community and household planning and mitigation20

decisions (Blessing et al., 2017). These maps, intended to be used to set �ood insurance rates, have become the de facto

indicator of �ood risk nationwide and are the primary reference point when making a vast array of decisions related to �ood
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risk such as where it is safe to develop, household protective actions, and local mitigation policies. However, because the SFHA

is binary, little information is provided about the distribution of risk to properties inside of the mapped �ood hazard areas, and,

even more so, for residual risks to properties outside of the mapped �ood hazard areas. Thus, the �oodplain boundaries result25

in “dichotomous decisions” whereby a house is treated the same whether it is 1 meter or 1 kilometer outside of the �oodplain

boundary (Brody et al., 2018; Morss et al., 2005) . As a result, homes are being built and purchased in at-risk areas, and actions

that would increase �ood resilience, such as meeting NFIP minimum design and construction requirements, are not being

adopted.

Further compounding the SFHA's inability to indicate at-risk areas is that many of the nation's �ood hazard maps are out of30

date, or, worse, non-existent. For example, a 2017 study found that over a quarter of high risk counties have U.S. �ood hazard

maps over 10 years old, failing to capture recent changes in climatology and land use/land cover that can heighten risk (Of�ce,

2017). Although FEMA's Map Modernization (Map Mod) program updated many of the nation's �ood maps from 2003 to 2008

it still struggles to keep them up to date (ASFPM, 2020) in part because the models used to produce the FEMA SFHAs are

discontinuous across large spatial scales and often commissioned in patchwork, community-by-community basis that is both35

slow to implement and resource intensive ((FEMA) 2015). A recent study found that 15% of the NFIP communities have �ood

hazard maps that are over 15 years old, and that only a third of that nation's streams have �ood maps (ASFPM, 2020). Updating

the nations �oodplain maps and mapping previous unmapped areas is a costly solution at an estimated3:2billionto 11.8 billion

(USD) with an additional107millionto 480 million (USD) per year to maintain them (ASFPM, 2020).

Machine learning (ML) methods provide a potential alternative to estimate �ood hazards based on historical records of40

�ood loss, especially in resource-limited areas. One such ML algorithm that has shown to be particularly effective within

�ood hazard mapping are random forests which have recently been used to create a spatially complete �oodplain map of the

conterminous United States (Woznicki et al., 2019) and to predict �ood insurance claims at US Census tract and parcel levels

(Knighton et al., 2020). Although initial work has shown random forests improve the prediction of �ood hazard, there have

been no studies that have used historic records of structural �ood damage to estimate a probabilistic �oodplain, and many of45

the previous studies have used sampling procedures that can undermine model reliability. Also, there has been little to no effort

to compare random forest predictions against existing regulatory �oodplains.

We address these gaps by introducing a novel method to map �ood hazards continuously across large spatial scales using a

random forest classi�cation procedure trained on 40 years of historic �ood damage records from the National Flood Insurance

Program (NFIP). Using the NFIP data and high-resolution geospatial data (e.g., topographic, land use/land cover, soils data),50

we generate �ood hazard maps for a large coastal area in Texas Gulf Coast Region. We then compare our modeled outputs

against the FEMA �oodplains using multiple metrics at regional and community scales. The following sections provide further

background on machine learning algorithms and their application to hazards research (Section 2), describe the methods and

data used for our analysis (Section 3) and present the model results (Section 4). This is followed by a discussion (Section 5)

and conclusions (Section 6).55
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2 Background

Data-driven models – those that use statistical or machine learning algorithms for empirical estimations – are prevalent in water

resources research (Solomatine and Ostfeld, 2008) and are rapidly gaining popularity for prediction and estimation of �ooding

in the hydrological sciences (Mosavi et al., 2018). For instance, models predict stream discharge rates (Albers and Déry, 2015),

estimate insured �ood damage for either the household (Wagenaar et al., 2017) or aggregated (Brody et al., 2009). Data driven60

approaches have also identi�ed �ood probability during a �ood event (Mobley et al., 2019)(i.e. �ood hazard). When data in

an area is sparse these models can help better describe the system (Rahmati and Pourghasemi, 2017). Often however, these

approaches require large datasets for an accurate representation (Solomatine and Ostfeld, 2008) . In answer to the data problem

many data driven models rely on non-traditional data sources. For example, using video frames �ood waters can be identi�ed

for a given location (Moy de Vitry et al., 2019).65

Flood hazard models use dichotomous variables and driver layers to predict the likelihood of �ooding across the landscape.

This dichotomous variable can come from a variety of datasets, such as high water marks or �ood losses (Knighton et al.,

2020). Depending on data availability, models have predicted �ood hazard across time (Darabi et al., 2019) or for speci�c

events (Lee et al. 2017). Producing one of two outputs a probability of �ooding (Darabi et al., 2019) , or re�ned into classes

of susceptibility (Darabi et al., 2019; Dodangeh et al., 2020). Both of which give more information than the current SFHA70

dichotomy, in or out of the �ood zone. Through this process, researchers are able to map large geographic areas (Hosseini

et al., 2019) with potential to scale further given suf�cient data availability. This method has shown to quickly (Mobley et al.,

2019) and accurately estimate �ooding (Bui et al., 2019) .

The amount of data available and how its structured affect the techniques available for predicting �ood hazard. Flood hazard

models require point locations where �ooding has occurred. If non-�ooded locations are unavailable pseudo-absences can be75

randomly generated for modelling (Barbet-Massin et al., 2012). Common algorithms used for predicting �ood hazard models

include neural networks (Janizadeh et al., 2019a; Bui et al., 2019), Support Vector Machines (SVM) (Tehrany et al., 2019a), and

Decision Trees, such as Random Forests (Woznicki et al., 2019; Muñoz et al., 2018). While other algorithms have been used

for predicting �ood hazard (Bui et al., 2019), these three algorithms are often used in machine learning due to their maturity

in research and their generalizability. SVMs are ideal in areas with small sample sizes, but computation times are quadratic80

as sample sizes increase (Li et al., 2009). The computational complexity of the model removes the scalability of the model, a

primary bene�t over physical models. Neural networks are often cited as highly accurate (Mosavi et al., 2018), but often come

with a reproducibility problem (Hutson, 2018) .

Finally, computational requirements for decision trees are lower than the other two algorithms. The Random Forest algo-

rithm comes from the decision tree family of models. The Random Forest model is highly generalizable within the drivers'85

parameters. Decision trees are non-parametric and use logic to branch at different values within the independent variables

to best �t the classi�cation (Quinlan 1986). By creating numerous trees and democratizing the decision, ensemble classi�ers

reduce over�tting of the �nal model while maintaining accuracy (Breiman 2001). Each tree is given a random subsample of

the independent variables to predict the dependent variable. These ensemble classi�ers are computationally ef�cient and main-
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tain a high degree of sensitivity (Belgiu and Dr�agut, 2016). Random forests are capable of identifying interactions between90

independent variables and the dependent variable regardless of the effect size (Upstill-Goddard et al., 2013).

3 Methods and Materials

3.1 Study Area

We use the USGS Watershed Boundary Dataset to delineate a region encompassing thirteen Hydrologic Unit Code (HUC)

8-digit watersheds that drain to Galveston Bay and the intercoastal waterway, as well as the Lower Trinity and Brazos Rivers95

and the San Bernard River (Figure 1). The resulting study area encompasses 28,000 km2 and includes two economic popula-

tion centers: the Houston-Woodlands-Sugar Land Area, also known as Greater Houston, home to 4.8 million people and the

Beaumont-Port Arthur-Orange Area, also known as the Golden Triangle, home to 0.4 million people (Bureau 2019). Including

rural areas, the total population of the study region is estimated to be around 8 million, accounting for around 25% of the

population of Texas (Bureau, 2019).100

The region is prone to damaging �ood events, resulting in$16.8 billion in insured loss between 1976 and 2017 across

184,826 insurace claims. Predominately clay soils and low topographic relief coupled with extreme precipitation results in wide

and shallow �oodplains. Regional �ood events are driven by several dominant mechanisms, including mesoscale convective

systems (MCS) and tropical cyclones (Van Oldenborgh et al., 2017). Recent examples of MCS-driven events include the

Memorial Day Flood (2015), Tax Day and Louisiana-Texas Floods (2016). Several stalled tropical cyclones, including Tropical105

Storms Claudette (1979), Allison (2001), and Hurricane Harvey (2017), have also resulted in record-setting precipitation.

Frequency estimates of tropical cyclone landfall range from once every nine years in the eastern part of the study region to

once every nineteen years in the southwest part of the region (NHC 2015). Historical storm surge ranges as high as 6 m along

the coast. Notable surge events include the Galveston Hurricanes (1900, 1915), Hurricane Carla (1961), and Hurricane Ike

(2008). Several previous studies have demonstrated that �ood hazards are not well-represented by the FEMA SFHA (High�eld110

et al., 2013; Brody et al., 2013; Blessing et al., 2017), suggesting a large proportion of the population along the Texas coast are

not only vulnerable to �ooding, but the decision makers lack the information to properly account for it.

3.2 Data Collection

3.2.1 NFIP Claims

Between 1976 and 2017, there were 184,826 NFIP claims, each of which was geocoded to the parcel centroid. The NFIP115

�ood losses dataset provides the location, total payout, and structural characteristics. Claims provide a reliable indication

of the presence of �ooding but fail to identify locations that have not �ooded making the dataset presence only. Random

Forest algorithms require a binary dependent variable identifying presence and absence locations. A pseudo-random sample of

background values can be used as a proxy for locations where �ooding is absent (Barbet-Massin et al., 2012). Therefore, the

background sample locations were based on a random selection of structures. The Microsoft structures footprints dataset was120

4

https://doi.org/10.5194/nhess-2020-347
Preprint. Discussion started: 28 October 2020
c Author(s) 2020. CC BY 4.0 License.



used due to the open source availability and high accuracy (https://github.com/Microsoft/USBuildingFootprints). The study

matched structures and claims using a one-to-one sample by watershed and year. This one-to-one matching reduces potential

bias from an unbalanced dataset (Chen et al., 2004). The �nal dataset removed any sample where an independent variable had

null values, but the �nal ratio remained close to 50% of the claims with a sample size of 367,480.

3.2.2 Contextual Variables125

To parameterize �ood hazard, several contextual variables were considered which represent the potential predictors of �ooding

across the study area (see Table 1). These variables can be divided into two main categories: (1) topographic: elevation and

distance features which drive watershed response; and (2) hydrologic: overland and soil characteristics which govern in�ltration

and runoff. The variables were collected at different scales based on data availability. All variables were resampled to a 10-

meter raster and snapped to the Height Above Nearest Drainage (HAND) dataset. Below, we outline the variables, the reasoning130

behind their inclusion, and previous data-driven �ood hazard studies that used them.

3.2.3 Hydrologic

Hydrologic variables explain how stormwater moves across the landscape and, therefore, can help differentiate between low

and high �ood potential areas. The amount of stormwater that a given area can receive is a function of its �ow accumulation

potential, which is primarily mediated by three factors: the soil's ability to absorb water (i.e. saturated hydraulic conductivity),135

roughness (i.e. Manning'sn), and imperviousness. Flow accumulation measures the total upstream area that �ows into every

raster cell based on a �ow direction network as determined by the NED (Jenson and Domingue, 1988). Areas with high �ow

accumulation are more susceptible to receiving larger amounts of stormwater during a given rainfall event. Soil in�ltration

in�uences the speed and amount at which stormwater can be absorbed into the ground. When stormwater cannot move into

the ground easily, it may result in additional runoff, particularly in urbanized and downstream areas. Two measures of soil140

in�ltration include lithology and saturated hydraulic conductivity (Ksat), both of which have been shown to be strong predictors

of �ood susceptibility (Brody et al., 2015; Janizadeh et al., 2019b; Hosseini et al., 2019; Mobley et al., 2019). For this study,

Ksat values were assigned to soil classes obtained from the Natural Resources Conservation Service's (NRCS) Soil Service

Geographic Database (SSURGO) using the values presented in Rawls et al. (1983), and then averaged across the upstream

contributing area for each cell.145

Imperviousness is another strong indicator of an area's ability to in�ltrate water. Previous studies have found that increasing

impervious surfaces as a result of urbanization reduces in�ltration and causes increased surface runoff and larger peak dis-

charges making it an important aspect in determining �ood frequency and severity (Anderson, 1970; Hall, 1984; Arnold Jr and

Gibbons, 1996; White and Greer, 2006). Imperviousness has been previously shown to be highly important in the Houston

region where urban sprawl has greatly increased imperviousness in the region and contributed to higher volumes of overland150

runoff (Brody et al., 2015; Gori et al., 2019; Sebastian et al., 2019). For this study, percent impervious was measured using the

percent developed impervious surface raster from the National Land Cover Database (NLCD) for the years: 2001, 2006, 2011,

and 2016. Values range from 0-100% and represent the proportion of urban impervious surface within each 30-m cell. Because

5

https://doi.org/10.5194/nhess-2020-347
Preprint. Discussion started: 28 October 2020
c Author(s) 2020. CC BY 4.0 License.



comparable remote sensing imagery only exists for these year, impervious surface was associated with the nearest date of each

claim.155

Roughness in�uences the speed at which stormwater can move across the landscape as well as the magnitude of peak

�ows in channels (Acrement and Schneider, 1984). Previous engineering studies have corroborated the relationship between

roughness and overland water �ow using Manning's roughness coef�cient (Anderson et al., 2006; Thomas and Nisbet, 2007).

This coef�cient, called Manning's n, has become a critical input in many hydrological models and has also been shown be

a good predictor of event-based �ood susceptibility (Mobley et al., 2019). For this study, roughness values were assigned to160

each NLCD land cover class using the values suggested by Kalyanapu et al. (2010), and, like Ksat, was averaged across the

contributing upstream area for each raster cell for the years: 2001, 2004, 2006, 2008, 2011, 2013, and 2016.

3.2.4 Topographic

Elevation and slope are topographic variables frequently used to model �ood hazard (Lee et al., 2017b; Tehrany et al., 2019a;

Rahmati and Pourghasemi, 2017; Bui et al., 2019; Hosseini et al., 2019; Mobley et al., 2019; Darabi et al., 2019). Low-lying165

areas tend to serve as natural drainage pathways making them more susceptible to �ooding and ponding during rainfall events.

Elevation and slope were calculated using the National Elevation Dataset (NED), which was provided as a seamless raster

product via the LANDFIRE website at a 30-m resolution LandFire (2010).

Three continuous proximity rasters were used in this study: distance to stream, distance to coast, and height above nearest

drainage (HAND). Proximity to streams and the coastline have been shown to be signi�cant indicators of �ood damage Brody170

et al. (2015) as these areas are typically much more prone to overbanking and surge respectively. More recent �ood hazard

studies have used proximity to streams (Lee et al., 2017b, a; Dodangeh et al., 2020; Janizadeh et al., 2019a, b; Tehrany et al.,

2019a, b; Rahmati and Pourghasemi, 2017; Bui et al., 2019; Hosseini et al., 2019; Mobley et al., 2019; Darabi et al., 2019),

whereas proximity to coasts has been less common (Mobley et al., 2019). Both distance to stream and coast were calculated

based on the National Hydrography Dataset (NHD) stream and coastline features.175

HAND is calculated by de�ning the height of a location above the nearest stream to which the drainage from that land surface

�ows (Garousi-Nejad et al., 2019). Areas with high measures of HAND are more buffered from �ooding because it requires

increasingly more stormwater of short durations to create the peak �ows that would reach those locations. This measure has

been used to calculate �ood depths, the probability of insured losses from �oods (Rodda, 2005), soil water potential (Nobre

et al., 2011), groundwater potential (Rahmati and Pourghasemi, 2017), and �ood potential (Nobre et al., 2011). HAND was180

downloaded from the University of Texas' National Flood Interoperability Experiment (NFIE) continental �ood inundation

mapping system (Liu et al., 2016) at a 10-m resolution.

Topographic wetness index (TWI) (Beven and Kirkby, 1979) is a popular measure of the spatial distribution of wetness con-

ditions and is frequently used to identify wetlands. TWI is used to quantify the effects of topography on hydrologic processes

and is highly correlated with ground water depth, and soil moisture (Sörensen et al., 2006). This measure has been found to be185

an in�uential and, in some cases, a signi�cant predictor for estimating �ood hazard (Lee et al., 2017b; Tehrany et al., 2019a;
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Bui et al., 2019; Hosseini et al., 2019; Tehrany et al., 2019b). TWI is calculated by the following equation:

T WI = ln
(A � 900) + 1

tan(
(S0 � � )

180
)

(1)

Where A is the contributing area (or �ow accumulation) andS0 is the average slope over the contributing area. High values

of TWI are associated with areas that are concave, low gradient areas where water often accumulates and pools making them190

more vulnerable to �ooding. Random Forest Model Random Forest models categorize samples based on the highest predicted

probability for each class. We developed a random forest algorithm at the parcel level using the variables in Table 1. The NFIP

�ood claims dataset was split between a training and test dataset. The test dataset was based on 30% of the initial dataset. Within

the training dataset cross-validation is used to decide the �nal variables, and parameters. A k-folds sampling method uses 90%

of the training dataset to predict the other 10%. This sampling method helps to measure the robustness of the model, as variables195

are pruned, and parameters are tweaked. The cross-validation assessment uses a 10-sample strati�ed k-fold. Structures were

randomly sampled reducing the potential for storm event-based bias. In addition to the k-folds cross-validation, a year-by-year

assessment was performed by removing one year as a validation sample for a model based on all other years. For example,

1976 through 2016 were used to predict �ood hazard in 2017, then 1977 through 2017 were used to predict 1976, and so forth.

This year-by-year assessment helps to identify the limitations of this �ood hazard approach. All random forest computations200

were performed with the sci-kit learn package (Pedregosa et al., 2011) in Python version 3.8.

Creating a properly calibrated Random Forest requires tuning two parameters to minimize error, and variable selection to

improve generalizability. The two parameters tuned were the number of trees and the maximum tree depth. The number of trees

controls how large a forest is used for the predictive model. Increasing the number of trees reduces error rates and increases the

attributes used in the decision (Liaw et al., 2002), but comes at the costs of increasing computation time. Tree depth controls205

the maximum number of decisions that can be made, but too large of a tree will increase the chance of the model over�tting

the data and reduce generalizability. The model used 200 trees, and a maximum tree depth of 90, after optimizing error rates

using the k-folds analysis. Variable reduction reduces the complexity of the model and decreases the likelihood of the model

over�tting, while speeding up the �nal training and raster predictions. An out-of-bag error score (OOB), isolates a subset of

the training dataset which is used to measure error rates of each variable (Breiman, 1996) and generates feature importance.210

Initially, all variables were added to the model, those variables with the lowest contribution to feature importance were removed

from the �nal model. A �gure representing feature importance can be found in Appendix A.

A series of metrics were used to identify if the model is properly calibrated. Average accuracy and sensitivity are measured

for each iteration of the k-fold analysis. Accuracy measures the percent of correctly identi�ed �ooded and non-�ooded samples.

Sensitivity estimates the probability that �ooded sample will be predicted with a higher likelihood of �ooding than a non-215

�ooded sample (Metz, 1978) and based on the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC).

In practice AUCs are robust for continuous probabilities and are not limited by the number of features in a model or a threshold

to use for classi�cation. Both accuracy and sensitivity were compared against the �nal model and the test sample. Ideally, the

�nal model should be similar in accuracy and sensitivity to the average found in the k-fold analysis. A calibration plot shows

how well the model predicts probabilities given the proportion of �ooded points in each bin. A properly con�gured model will220
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fall along a diagonal on the plot. Random forest outputs can be either a classi�cation or represented as a probability. In this

study, the �nal output was based on probability of �ooding.

As an additional validity check we compared the RF prediction against the FEMA SFHAs by examining the amount of

area and structures exposed to speci�c annual exceedance probabilities. The RF model predicts the probability that a location

�oods over the 42 years of the study. To convert the RF probabilities to annual exceedance probabilities we used the following225

equation.

exceedence= 1 � (1 � pf lood )(1=T ) (2)

This procedure allows for a more direct comparison between the FEMA SFHA and �ood hazard.

4 Results

4.1 Model Performance230

Ten k-fold cross validation was performed to predict �ood hazard across twelve watersheds in the study area. From the k-folds

analysis, the mean model accuracy was 81.9% � 0.00198, while the �nal test accuracy is 82.2%. The model had an average

sensitivity was 0.893� 0.00184 (Figure 2 left) while the �nal model produced a sensitivity of 0.895. In the year-by-year

analysis, years predicted with a high sensitivity fall within relatively normal events, while the extreme events such as hurricane

Harvey (60+ inches of rain) and Hurricane Ike (high storm surge) should perform poorer in relation. The year-by-year analysis235

showed more variation in sensitivity (Figure 2 right), mean AUC was 0.884� 0.0482. The year with Hurricane Ike had the

lowest sensitivity at 0.730 and the year with Hurricane Harvey performed poorly as well 0.761. The highest sensitivity was

predicted in 1997: 0.929. This analysis sheds light on how the model performs for extreme events. For example, years such as

2017 perform worse as the conditions brought on by Hurricane Harvey are rarely seen.

The calibration plot (Figure 3) suggests that the model slightly underpredicts �ooded points at lower probabilities, and240

slightly overpredicts �ooded points at higher probabilities. The underprediction is explained by the histogram below the plot.

Most non-�ooded structures have a probability below 30%, while the largest proportion of �ood loss points occur above 90%.

4.2 Comparison with the FEMA SFHA

Flood hazard probabilities were converted to annual exceedance (Figure 4) which allowed us to compare the amount of area

and structures exposed to speci�c annual exceedance probabilities with the FEMA SFHAs. Note as a reminder, the 100-year245

�oodplain has an annual exceedance of 1% and the 500-year �oodplain has an annual exceedance of 0.2%. Based on the

modeled �ood hazard, 13,810 km̂2 of land and 649,140 structures have a 1% chance of �ood any given year and 26,348 km2

and 1.81 million structures have 0.2% chance of �ooding any given year. In contrast, 8,000 km2 are classi�ed within the 1%

SFHA encompassing 207,000 structures, while the 0.2% �oodplain increases in size to 9,900 km2̂ and encompasses 500,000

structures.250
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Focusing on three �ood prone areas, the model shows high �ood hazards currently not identi�ed by the FEMA SFHA (Figure

5). In Conroe (Figure 5a-c), for example, the 1% areas appear visually similar for the SFHA and the �ood hazard model, but

when counted the �ood hazard model predicts seven and a half times more structures around lake Conroe that have at least a

1% chance annually of �ooding compared with the 1% SFHA. In the Meyerland area (Figure 5d-f) both the FEMA SFHA and

the Flood Hazard model clearly predict �ooding along the rivers and identify areas where the �oodplain expands. However, the255

�ood hazard model identi�es a much larger area with at least a 1% chance of annualized �ooding. Finally, within Port Arthur

(Figure 5g-i) the �ood hazard model expects that the whole area has a �ood hazard of at least 0.2%, a signi�cantly larger area

than FEMA's 0.2% �oodplain.

5 Discussion

The results illustrate that �ood hazards can be accurately estimated using a machine learning algorithm. The model is compu-260

tationally ef�cient, scalable, and can be used to predict �ood hazards over relatively large regions. Overall, the model creates

an accurate representation of �ood hazard for the study area and demonstrates strong discriminatory power. When compared

against similar studies using machine learning approaches to predict �ood hazards (Dodangeh et al., 2020; Janizadeh et al.,

2019a), our model demonstrates lower sensitivity. The differences are likely attributed to the high topographic relief of these

regions where �uvial �ood hazard predominate (Tehrany et al., 2019b), likely contributing to the predictive capacity of the265

models. In contrast, Southeast Texas is characterized by little topographic relief where �ooding may emanate from pluvial,

�uvial, and marine sources, making �ood prediction more complex. In fact, when comparing model sensitivities across the

study region, we �nd that the model performance increases in more steeply sloped inland areas than �at coastal areas.

Another aspect impacting model performance was sample selection. A systematic approach that identi�es areas that did not

�ood (Darabi et al., 2019) can be important to increasing model performance (Barbet-Massin et al., 2012). While the model is270

based on a comprehensive record of observed �ood claims in the study area from 1976 to 2017, there is no comparable record

for structures that have not �ooded. One option would be to randomly sample areas that have no claims, however this would not

control for bias in the absence data and come at the expense of model performance (Wisz and Guisan, 2009). To overcome this

potential bias, we generated pseudo-absences by randomly selecting a sample of non-�ooded structures by watershed and year

to minimize this selection bias (Phillips et al., 2009). Based on the calibration plot (shown in Figure 3) this is an appropriate275

assumption.

A novel outcome of this analysis are statistically generated �ood hazard maps that can be compared to FEMA's regulatory

�oodplains. That is, we used the predicted model likelihoods to generate 1% and 0.2% annual exceedance probability thresh-

olds, or, equivalently, the 100-year and 500-year �ood hazard areas. The statistically generated �ood hazard areas differed from

the regulatory �oodplains in that they are: 1) nearly 3 times as large and 2) captured areas that are hydrologically disconnected280

from streams and waterbodies. The �ndings suggest that this approach can better capture small scale variability in �ood hazard

by implicitly detecting underlying drivers that manifest themselves through subtle changes in historic damage patterns and
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trends. This corroborates previous research �ndings that the current 100-year �oodplain underestimates and fails to accurately

represent �ood risk particularly in urban areas (Blessing et al., 2017; Galloway et al., 2018; High�eld et al., 2013).

It should be noted that the interpretation of the predicted random forest �ood hazard areas differs from existing regulatory285

�oodplains, in that they are detecting the return period for structurally-damaging inundation. The differences between the

statistically generated �ood hazard areas and regulatory �oodplains is likely a result of multiple advantages of a data-driven

approach in identifying the conditions in the underlying drivers (Elith et al., 2011). In other words, a data-driven model to

better capture the reality of �ood hazard by using actual historic impacts and simultaneously identifying small-scale variations

in �ood exposure. By using historic losses, the random forest model accounts for extreme events that have occurred, but290

projecting future hazard is currently limited. The model does not incorporate precipitation patterns, this was by design as we

assumed that with the relatively small-scale, precipitation would be homogenous around the region and add little insight. With

precipitation added to the model, there is still a potential for error by underestimating the probability of future extreme events.

6 Conclusions

In this paper we demonstrate the ef�cacy of a random forest statistical model in spatially identify �ood hazards in Southeast295

Texas, encompassing the Houston metropolitan area. In comparison with FEMA SFHA, we show that a statistically-based

�ood hazard model can 1) better capture the reality of �ood hazard by using actual historic impacts, 2) better capture small

scale variability in �ood hazard by implicitly detecting underlying drivers that manifest themselves through subtle changes in

historic damage patterns and trends, 3) avoids the uncertainty associated with estimating rainfall return periods, stormwater

infrastructure characteristics, and �ood depths, 4) easily include alternative drivers of �ood hazard such as HAND and TWI,300

and 5) be quickly updated using recent insurance claim payouts.

Data availability. All independent drivers for the �ood hazard model can be found at the at the Dataverse repository

(https://dataverse.tdl.org/dataverse/M3FR).The Flood hazard output can be found at the following url:

https://doi.org/10.18738/T8/FVJFSW (Mobley, 2020). Flood loss data can not be publicly shared due to privacy concerns. The sources of

python libraries used are as follows: Scikit-learn library (Pedregosa et al., 2011); RasterIO (Gillies et al., 2013–); NumPy (van der Walt et al.,305

2011); and Pandas (Wes McKinney, 2010).
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Figure 1. Depicts a map of the Study Area. Data originated from the U.S. Census Bureau and the U.S.Geological Survey.
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Figure 2. Left) The Receiver Operating Characteristic (ROC) shown for 10k-folds cross validation. Right) The ROC shown for the year-

by-year analysis. The year by year analysis shows generalizability of the model by predicting how well a standalone years �ooding will �t

within the model. This approach also identi�es years with storm outliers.
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Figure 3. Calibration plot (top) with histogram of �ooded / non-�ooded samples and their predicted values.
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Figure 4. Continuous �ood hazard map for the pilot study area based on model output. Road layers originated from the U.S. Census Bureau.
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Figure 5. Side-by-side visual comparison for three areas affected by differing �ood types. (a-c) Conroe area (d-f) Meyerland and (g-i) Port

Arthur. Maps compare (left) current effective 100-year and 500-year �ood plains (c. 2016) (center) areas within the 100-year and 500-year

annual �ood zones based on the Random Forest �ood model;(right) continuous �ood hazard map. Road layers originated from the U.S.

Census Bureau and Floodplains originated from Federal Emergency Management Agency.
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Figure A1. Feature importance chart. Note variables below, 0.05 were removed from the �nal model.
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