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Abstract: Adopting effective flood mitigation practices for repetitive flood events in the United States

continues to play a prominent role in preventing future damage and fostering resilience to residential

flooding. Two common mitigation practices for reducing residential flood risk consist of raising

an existing structure to or above base flood elevation (BFE) and acquiring chronically damaged

properties in flood prone areas and restoring them back to serve their natural functions as green open

spaces. However, due to data accuracy limitations, decision makers are faced with the challenge

of identifying the financially optimal approach to implementing mitigation measures. We address

this problem through the following research questions: What does the optimal allocation of flood

mitigation resources look like under data uncertainty, and what are the optimal methods to combining

mitigation measures with consideration for the best economic benefits? Using a robust decision

making (RDM) approach, the effects of uncertainty in property values, construction and demolition

costs, and policy implementation options such as structure selection and budget allocation were

measured. Our results indicate that the amount budgeted for mitigation and how those funds

are allocated directly influence the selection of the most economically viable mitigation practices.

Our research also contributes to the growing need for evaluating specific flood mitigation strategies.

Keywords: uncertainty analysis; scenario planning; urban flooding; flood mitigation; property acquisition

1. Introduction

Effective flood mitigation practices continue to play an important role in preventing repetitive

property damage in flood-prone communities, thereby fostering resilience to residential flooding.

Two of the most common mitigation practices for reducing residential flood risk are elevating structures

and acquiring damaged properties in flood prone areas. However, in practice, policies to implement

these mitigation strategies are often reactionary and haphazard. Because of the complex nature of

flooding problems, local decision makers are faced with the critical task of determining the most optimal

ways to disburse recovery funds for these mitigation strategies while also maximizing economic

benefits and flood risk reduction.

Elevating structures using fill, pilings, or other support structure to prevent inundation is one

of the most common parcel-level flood mitigation methods [1]. This typically involves elevating a

building to the 100-year level of inundation known as Base Flood Elevation (BFE) to prevent inundation

from frequent flood events. Beyond BFE, some communities require freeboard to provide additional

levels of protection from flood-induced inundation. Freeboard is calculated as the number of feet

a building is raised above the BFE [2]. The height of freeboard and elevation vary for different
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communities, but the Federal Emergency Management Agency (FEMA) recommends at least one foot

of freeboard for structures in the 100-year floodplain. Other jurisdictions have stricter requirements

requiring at least two feet of freeboard for new construction in the floodplain. Elevating structures

can be costly and difficult depending on the existing foundation type. For example, “slab on grade”

foundations are more expensive to elevate compared to structures on existing pile or pier and beam

foundations. Funding programs from FEMA such as the Hazard Mitigation Grant Program (HMGP),

Flood Mitigation Assistance Program (FMA), and Pre-Disaster Mitigation Grant Program all make

provisions for funding property elevations. Local jurisdictions serve as subgrantees to grants received

by the state through FEMA and are required to identify the spending priorities for the grants requested

while also providing matching funds to execute the projects identified [3,4].

The second common mitigation method involves buying out flood-prone properties to restore the

land back to its natural function as green open space. Since 1989, over 40,000 residential properties

were acquired throughout the United States (US), primarily through FEMA programs [5]. The Federal

Government passed the Disaster Mitigation Act after the catastrophic 1993 Midwest floods, which

allowed for property acquisition and relocation of flooded properties and to help homeowners qualify

for a buyout of their property at a pre-flood price [6]. HMGP is one of the most popular buyout

programs and provides 75% of acquisition costs from the federal government while requiring local

jurisdictions and agencies to match the remaining 25% [7,8]. Other programs include the department

of Housing and Urban Development’s (HUD) Community Development Block Grant (CDBG) [4,7] and

the Flood Mitigation Assistance Program, which also grant funds from the National Flood Insurance

Program (NFIP) for property acquisition. Some of these funding agencies require a benefit-cost analysis

process to determine whether it is more expensive to purchase the property rather than cover repairs

and risk potential loss in the future. Damaged properties in the 100-year floodplain and those that

have experienced severe repetitive losses are automatically considered cost effective for buyout and

acquisition [7,9,10].

Although these mitigation methods are widely used by many local jurisdictions, among decision

makers and planners, there is a discrepancy between where mitigation is implemented and an approach

that is financially optimal from a flood-risk perspective. In addition, some approaches will protect more

structures than other policies. This optimization issue is due in part uncertainties in data accuracy and

limitations, as well as analyzing a limited number of potential policies. FEMA’s Benefit-Cost Analysis

(BCA) toolkit is widely used to justify property acquisition as economically viable [11], however it fails

to account for data uncertainties. Failing to address uncertainties is not unique to flood risk reduction;

it is also common across many forms of climate adaptation community plans [12]. These limitations

result in mitigation measures that can be haphazardly administered following a flood event. A robust

decision making (RDM) approach is one approach to making more informed decisions [13] and can

be useful in identifying the optimal combination of buyout and elevation policies for flood prone

communities. RDM methods are iterative, starting with a simple model, which gradually become

more complex as more information is known [13]. RDM models identify slow moving variables,

or constraining assumptions that can create undesirable outcomes [14].

The RDM process considers multiple objectives before a final decision. Through RDM, decision makers

identify optimal outcomes given multiple objectives; however, the outcomes are often wide-ranging due

to uncertainties in the decision-making parameters. Deep uncertainty occurs when the distribution of

one or more variables is unknown and experts cannot agree [15]. However, with a properly designed

model, an RDM provides scenarios and estimated outcomes, which are robust in accounting for

uncertainty [16]. Uncertainty is explored through scenario-based models that iterate across the range

for a variable. When a model uses a small sample of scenarios, they characterize the uncertainty, while

a larger sample of scenarios allows for quantifying the uncertainty [17].
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RDMs have a series of methods to quantify impacts of variable uncertainty. These methods

focus on identifying either optimal scenarios or identifying conditions that create specific effects.

When optimizing for multi-objectives, there are often a series of ideal solutions. Those scenarios

that cannot increase the outcome for one objective without decreasing the outcomes of another are

considered non-dominated and generate the Pareto front [18]. The Pareto front identifies the optimal

scenarios given multi-objectives. Within two objective models, this front is graphically represented

as a curve of scenarios. This curve can be identified either by using an optimization model, such as

the Borg Multi-Objective Evolutionary Algorithm [19] or identified after numerous scenarios are run

to visualize more possibilities [20]. The latter is computationally intensive but provides for further

scenario analysis.

An alternative to identifying the Pareto front is to bound scenarios based on looser objectives

and these characteristics are often based on catastrophic consequences [21], but they can also be used

to identify more ideal characteristics [22]. A common method for identifying these scenarios is to

use a Patient Rule Induction Method (PRIM) analysis [23]. The PRIM analysis identifies gradually

decreasing boxes that fit scenarios of interest across one or more axes. Through this analysis rules

are generated in which the scenarios fit, adding variables and constraining rules as the box becomes

smaller. Three metrics identify how well these boxes fit the scenarios—(1) coverage explains how

completely the objective is defined by the box, (2) density measures the purity of the scenarios and is

analogous with precision, and (3) interpretability identifies how helpful this information is to decision

makers [21]. Density and coverage are often diverging characteristics, therefore picking an appropriate

box creates tradeoffs.

The current approach to buyout and elevation often uses limited analysis to identify an economically

viable strategy to prevent future damages. Limited data on the influence of cost adjustments such as

demolition cost, appraised market value of the property, structure elevation costs, and budgetary

allocation are usually causes of deep uncertainty in decision making for urban planners and floodplain

mangers. We apply an RDM approach to address these uncertainties and seek to answer the following

research questions: What does the optimal allocation of flood mitigation resources look like under data

uncertainty, and what policy practices will reduce undesirable scenarios?

2. Methods

We identify the optimal policies for buyouts and structural elevation using the Exploratory

Modelling and Analysis (EMA) uncertainty workbench [24] and calculate BCRs for each parcel

10,000 times, using a Latin Hyper-Cube Sampling between ranges for each variable of interest. This

sampling approach ensures that adequate scenarios are run. After the model is run, we identify the

Pareto front. In addition, we use the full scenario set to identify rules for selected outcomes and use a

PRIM analysis to determine what policies (i.e., structure selection and budget allocation) and uncertain

variables will produce those effects (property values, construction and demolition costs). Below, we

provide a full methodology on property selection.

2.1. Study Area

This study focuses on Galveston and Harris counties, located on the southeastern Texas coast in the

US. The Houston Galveston Metropolitan Area (HGA) also includes Galveston Island, a barrier island

in the Gulf of Mexico. The HGA is one of the largest metropolitan areas in the US, with approximately

4.42 million people, according to the 2010 US Census. Projections by the Houston Galveston Area

Council estimates that the population of the area may surpass 9 million people by 2040 [25].

Proximity to the Gulf Coast, relatively flat topography, soil conditions, and climate, combined

with the rapid population and economic growth, make the study area vulnerable to both coastal and

inland flooding. The upper Texas coast is one of the most surge-prone regions in the US and on

average experiences one major hurricane every 15 years [26]. Tropical storm Imelda is the most recent

storm to hit the southwest coast of Texas in September 2019. Prior to that was Hurricane Harvey in
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August 2017, with its extraordinary rainfall causing immense flooding and damage. Before Harvey,

the surge associated with Hurricane Ike in 2008 resulted in unprecedented social and economic impacts

locally [27]. Both Hurricane Ike and Hurricane Harvey were billion-dollar events, having estimated

damages exceeding $35.1 billion USD and $125 billion USD, respectively [28].

2.2. Buyout and Elevation Analysis

Analysis for this study was conducted at the parcel scale. Between Galveston and Harris Counties

we constructed a dataset consisting of 525,455 residential parcels that were provided by each county’s

tax assessors. Within our analysis, we first identify properties that would benefit from flood risk

mitigation by selecting properties flooded by either Hurricane Harvey or Ike, where peak inundation

from either storm is higher than the property’s first floor elevation. Of those parcels eligible for a

mitigation action, we calculated cost of acquisition or elevation, savings or damages prevented from a

flood event, and the benefit to cost ratio (BCR) for both buyouts and elevation. We calculated buyout

cost by adding the appraised market value of the property with the cost to demolish the property and

restore it to open space. Next, we identified the total savings from buyouts as the total of average

annualized losses (AAL) throughout the life of the property and added it to the present value of all

flood claims for the property

The AALs represent a property’s expected losses averaged for each year, these are estimated from

AIR Worldwide Corporation, a pioneer in the catastrophe modeling industry [29]. Maintenance values

were estimated at an annual cost of $550 USD per parcel based on conversations with community

planners. Remaining Economic Life (REL) was used to estimate how long a structure will remain

functional and was estimated using the parcels building quality and improvement type. Savings for

each year from present to the end of the property’s life is discounted by 3% as estimated by the US

Office of Management and Budget, a rate used in previous buyout studies [9,30]. Finally, we calculate

buyouts BCR by dividing buyout cost by buyout savings.

Buyout Cost = Market Value + Demolision Cost (1)

Buyout Savings =

∑REL
i=0 AAL−Maintenance

1.03i
+ f lood damages (2)

REL = Economic Li f e ∗ (Improvement Value/Replacement Value) (3)

Next, we calculate how much a structure should be elevated, as the depth of inundation from

either Hurricane Harvey or Hurricane Ike depending on which was deeper for a structure. Elevation

of a property was maxed out at five feet. This elevates the structure to the point where most would

not be inundated by the selected storm event. Elevation cost was calculated by multiplying the cost

per square foot to elevate, depending on foundation type, with the area of the building and the extra

elevation to be added to the building. Initial estimates from local elevation companies in the Houston

area for slab elevation is $65 USD per ft2 and pile is $45 USD per ft2. We estimated demolition costs for

Elevation savings is estimated by subtracting the expected losses before elevation from expected losses

after elevating the property. Expected property damage is estimated as property losses from either

Hurricane Ike or Harvey minus first floor elevation using USACE depth damage curves (for further

explanation of calculating inundation damages see [31]. Finally, BCR is calculated as elevation savings

divided by elevation cost.

Elevation Cost = height elevated ∗ costsq f oot ∗ bldg area (4)

Elevation Savings = property damageoriginal − property damagemitigated (5)
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2.3. Uncertainty Analysis

To identify whether to elevate or buyout, we begin by selecting all parcels with BCR greater than

0.75, the minimum threshold value currently used when estimating the environmental benefits of

property acquisition using FEMA’s BCA toolkit [11]. We further sort the selected properties from

highest to lowest BCR and apply a running sum of the cost. This allows us to subset parcels with an

optimal BCR given a specific budget. To identify structures to elevate, the same approach is used for

those parcels not meeting the buyout criteria for elevation. As shown in Table 1, the uncertainty analysis

allows policy makers to identify scenarios that allow for budgets allocation of up to $750 million USD,

buyout proportions 10–90%, as well as options for elevation cost, demolition cost, and appraised

market value of the elevated or acquired property.

Table 1. Summary of policy and uncertainty options.

Analysis Category Variable Value Ranges

Policies
Budget $75–750 million USD

Proportion buyouts 10–90%

Uncertainties

Demolition cost $6–9 USD per foot 2

Appraised market value cost adjuster 90–130%
Elevation cost adjuster 70–130%

Our uncertainty analysis yielded a total of 10,000 scenarios with the following set of outcomes:

• Buyout structures: the number of recommended structures to be bought out given uncertainties;

• Elevation structures: the number of recommended structures to be elevated given UNCERTAINTIES;

• Buyout savings: total savings from bought-out structures given uncertainties;

• Buyout cost: total cost from bought-out structures given uncertainties;

• Buyout BCR: total benefit to cost ratio from bought-out structures given uncertainties;

• Elevation savings: total savings from elevated structures given uncertainties;

• Elevation cost: total cost from elevated structures given uncertainties;

• Elevation BCR: total benefit to cost ratio from elevated structures given uncertainties.

3. Results

3.1. Uncertainty Scenarios

Results show that, on average, more properties are proposed to be impacted through elevation

than buyouts, with a higher return on investment. When mitigation strategies are combined, overall

BCRs are reduced compared to a single elevation or buyout option. As shown in Table 2, our analysis

created 10,000 potential scenarios which accounted for variations in the budget, proportion spent on

buyouts, and uncertainties in demolition cost, property market values, and cost to elevate a structure.

Across these scenarios, return on investment averaged $2.45 USD for each dollar spent and would on

average protect 2998 properties when both buyouts and elevation strategies are combined. Elevating

structures would often benefit more properties, with an average of 1672 properties protected from

inundation with a mean BCR of 2.45 while BCRs were often slightly higher with buyouts but protecting

fewer properties from flooding.
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Table 2. Descriptive statistics of the outputs for the 10,000 scenarios given uncertainties and

policy variations.

All Scenarios

Category Variable Mean STD Min Max

Buyouts

Number of structures 1326.64 847.15 79 4520
Savings ($ million USD) 494.8 244.2 55.8 1272.6

Cost ($ million USD) 206.0 1.43 8.45 669.7
BCR 2.88 0.835 1.55 7.73

Elevation

Number of structures 1672.14 1034 854 6143
Savings ($ million USD) 428.5 235.4 45.7 1374.9

Cost ($ million USD) 206.2 143.1 7.5 659.3
BCR 2.45 0.784 1.11 8.09

Both

Number of structures 2998.78 1296.99 622 6752
Savings ($ million USD) 923.3 330.9 230.5 1747.8

Cost ($ million USD) 412.2 194.9 74.8 749.7
BCR 2.45 0.515 1.43 4.49

3.2. Pareto Front Analysis

To achieve our objective of maximizing economic benefits as well as removing the maximum

number of structures out of flooding, we perform a Pareto front analysis. Maximizing both BCRs and

number of structures protected are diverging objectives, and graphing the Pareto front provides a

clear understanding of how these objectives are related. Higher budgets will increase the number of

structures protected; however, it decreases the amount saved per dollar spent. Calculating the Pareto

front for these 10,000 scenarios identified 32 scenarios (see Figure 1) that performed better across BCR

and the number of structures. We identified three scenarios that fall along this Pareto front—the first

prioritizes BCR, and the second prioritizes structures. The last scenario represents the middle ground,

where neither objective is at their maximum (Table 3). Along this front, the maximum BCR was 4.49

which would protect 1065 properties. Maximizing structures would protect 6752 properties, but the

BCR is only 2.22.

Figure 1. Pareto front for benefit to cost ratio (BCR) and number of structures.
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Table 3. Summary of three Pareto front experiments.

Category Variable
Combined BCR &

Structures
Maximize

BCR
Maximize
Structures

Buyouts

Number of structures 234 184 609
Savings ($ million USD) 131.4 108.5 282.1

Cost ($ million USD) 30.8 23 89
BCR 4.26 4.71 3.17

Elevation

Number of structures 1898 881 6143
Savings ($ million USD) 574.1 293.2 1375

Cost ($ million USD) 169.6 66.4 657
BCR 3.83 4.41 2.09

Both

Number of structures 2132 1065 6752
Savings ($ million USD) 705.5 401.7 1657

Cost ($ million USD) 200.4 89.4 746
BCR 3.52 4.49 2.22

Figure 1 shows the Pareto front compared with all other scenarios. This front was identified

by maximizing both the BCR and numbers of structures. Each point represents a scenario closest to

optimal (maximum number of structures and highest BCR) where any further increase in either BCR

or number of structures, will subsequently decrease the other.

The results for the Pareto front are shown in Tables 3 and 4. Table 3 shows the distribution of

the number of structures, cost, benefits and BCRs for maximizing either number of structures, BCR,

or both. Table 4 shows the policy and uncertainty values for these three possible scenarios along the

Pareto front. As shown in Tables 3 and 4, in order to maximize the return on investments only, it will

require a lower budget of about $90 million USD with a primary focus on spending about 74% of

the budget on elevation. The experiment to maximize number of protected structures increases the

budget to about $700 million USD, and the policy should be further dominated by elevated structures

with about 88% of the budget. Across all three scenarios, actual market values should be higher than

appraised market values, while elevation costs should be cheaper. Demolition costs are slightly more

expensive than the average scenario ($7.55–8.29 USD per square foot).

Table 4. Policy Uncertainty values across 3 scenarios.

Budget
($ Million USD)

Proportion of
Budget for

Buyouts (%)

Demolition
Cost ($ USD
Per Foot 2)

Elevation
Cost (%)

Market
Value (%)

Combined BCR and structures 200.48 14.4 8.29 70.06 128.11
Maximize BCR 90.02 26.19 7.69 70.81 128.44

Maximize structures 746.52 11.95 7.55 72.34 117.55

3.3. Spatial Distribution of Scenarios

Figures 2–4 show the spatial distribution of the three Pareto front experiments and identifies

properties that are either to be elevated or bought out. These proposed scenarios are compared with

Post-Harvey buyout focused areas within Harris County. Figure 3 specifically shows the distribution

of structures that equally prioritize both return on investment and number of structures. The results

show that most of the properties recommended for elevation are around the coastal communities of

Galveston with a few clusters around Galveston Island that are recommended for buyouts due to their

location and exposure to repetitive flooding. The areas recommended for buyouts in this research are

well in line with buyout-focus areas identified by Harris county agencies after Hurricane Harvey (see

reference [32]). However, our analysis shows that there are still several areas where buyouts will be

cost effective that are not currently identified as buyout areas in Harris County. Additionally, several
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clusters of properties that our analysis recommended for elevation are still identified by Harris County

agencies as buyouts using Hurricane Harvey buyout funding.

 

Figure 2. Spatial locations of optimizing both BCR and number of structures with post-Harvey

buyout–focused areas.

 

Figure 3. Spatial locations of optimizing BCR with post-Harvey buyout focused–areas.
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Figure 4. Spatial locations of optimizing both Structure and BCR with post-Harvey buyout–focused areas.

For maximizing the number of structures, Figure 4 shows a similar trend in terms of the locations

of buyouts and elevation, but with a higher overall number of structures that are mitigated from flood

damages. The results also show that several structures outside the SFHA are selected for elevation

especially around central Houston, Bellaire and downstream of the Addicks and Barker Reservoirs,

highlighting the need to address flood risk for properties outside the FEMA-designated 100-year

floodplain as economically viable properties for flood hazard mitigation. This scenario also captures

several properties in the coastal communities of Galveston and Bolivar Peninsular as prime properties

for additional elevation to reduce flood risk.

Figure 5 shows the spatial distribution of a policy focused on maximizing the BCR, which also

leads to several structures recommended for elevation. Although fewer structures are recommended

for buyout and elevation, this strategy has the highest return on investment compared with other

scenarios, with a BCR of almost 4.5. The spatial distribution highlights the locations of the properties

that either need buyouts or elevation that would provide the most value for every dollar spent in the

study area. The pattern shows that properties that are in the SFHA or in proximity to streams and

bayous are prioritized. Similarly, the two additional scenarios reviewed identified clustered areas

that have a higher return on investment if elevated, whereas local officials are targeting these areas

for buyouts.

3.4. PRIM Results

The PRIM analysis optimized two criteria—an ideal scenario should have a BCR of at least 2.19

and protect at least 2350 structures (Figure 5). Through this analysis, three rules were identified

for scenarios to meet the objectives: (1) The budget should be between $301.9–531.9 million USD;

(2) Elevation costs should be between 70% and 102% of FEMA estimated costs; (3) The proportion

of the budget focused on buyouts should be between 17–85%. Generating a density of 90.4% and

a coverage of 51.4%, these policies will have a 90% chance of achieving an optimal outcome, while

49.6% of optimal scenarios fall outside these condtions. These conditions will hold up across the data
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uncertainties of market value and demolition costs; however, elevation costs need to be close to or

cheaper than estimated costs. To ensure that elevation costs are not a factor, the budget and proportion

of buyouts will have to be further refined. Budget needs to be $340–435 million USD, while the ratio

should be 36.4–87.2% for buyouts. This scenario keeps density near the same (90.2%), but coverage is

dropped to 29.1%, suggesting there are numerous viable options outside these scenarios.

 

(a) 

(b) 

Figure 5. Patient Rule Induction Method (PRIM) analysis for optimal scenarios. (a) shows the PRIM

analysis for the objective: BCR > 2.19 and Structures > 2350. This represents 0.5 standard deviation

below each mean. (b) represents the rules generated by box 36 and will result in Coverage = 51.4%

Density 90.4%.

4. Discussion

Flood exposure and risk are expected to increase due to rapid population and development pressure

in vulnerable locations, while uncertain futures require a more robust process [12]. Our research

contributes to a growing need for evaluating flood mitigation strategies [33] while also accounting

for data uncertainties as a more robust approach. Although development policies may be in place to

prevent new development in floodplains and other vulnerable locations, it is essential that existing

properties are also either protected from flooding or completely removed from flood prone areas

to prevent the continued economic burden of repetitive flood losses. Our research has proposed a

robust approach to estimating possible outcomes for differing policies for elevating and buying out
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properties. These findings highlight the importance of evaluating parcel level mitigation strategies [34].

Our scenarios maximize number of properties protected for the most economic benefit and would

expect to experience reduced or no flood damages from future flood events. In comparison with the

status quo [32], this robust approach identifies a larger pool of potential properties to be mitigated.

These set of results provide local jurisdictions an opportunity to select suitable mitigation strategies

that are in line with their development policies, while also providing economically viable mitigation

options to homeowners. Below we highlight some important findings of this analysis.

Our analysis provides policy-based scenarios that are robust against several uncertainties. Most

decision makers ignore the uncertainties in the cost and budgetary allocations for mitigation projects

and make ad hoc, haphazard mitigation practices that are usually implemented in a reactionary

manner to specific flood event thereby resulting in minimal impacts [2]. Addressing the uncertainties

associated with mitigation measures not only provides an objective measure of identifying mitigation

options, but also ensure the appropriate mitigation measure given budget, locational and uncertainty

constraints. Money for hazard mitigation budgets are often allocated by the federal government and

are expected to be spent with utmost care and provide high return on investment [3]. Our results

show that budget drives most of the variations in outcomes when looking at elevation and buyouts

combined. Higher budgets would protect more properties, but with an associated decrease in economic

efficiency, a result demonstrated in previous multi-objective mitigation studies [35]. When looking

at buyouts and elevation individually, the proportion allocated to buyouts had a higher impact in

variation and outcomes.

The results of our experiments suggest that decision makers have the ability to achieve high BCR

values while protecting thousands of structures, even when facing uncertainties. Uncertainties in

market value were the largest driving factor relative to uncertainties around demolition and elevation

costs. Scenarios were more likely to achieve our objectives, if the appraised market value used in

the study are over-valued compared with actual market values. When market values are lower,

as compared to appraised property values, more structures can be protected or removed, while a

higher market values increases the amount saved per dollar spent. This highlights the importance

of conducting additional research on when and how properties should be appraised for government

acquisition to prevent flood damage. Further, while other studies suggest that elevation will reduce

damages, without grants to help homeowners, retrofitting homes to a higher elevation may be cost

prohibitive for many structures [36]. This study provides evidence that elevating structures should be

a more viable option to spend government resources for risk mitigation when the appropriate funding

mechanisms are in place, as our analysis showed that elevation consistently protected more properties

across scenarios while remaining cost efficient.

Although this study explored mitigation alternatives using multiple-objectives and inclusive of

uncertain parameters, this model was a simple first step and future research should be conducted

to address our limitations. For example, we focused on parcels within two counties, but most of

the decisions will be made at the municipal level. In Harris County alone, there are 45 different

incorporated municipalities, each of which has their own tax base, development policies, and capacity

to support flood mitigation projects. While municipalities provide mitigation options such as elevation

or buyouts, the ultimate decision lies with the homeowner. Because some homeowners may push back

against governmental property acquisition, a checkerboard pattern often occurs where buyouts are not

directly adjacent to other buyouts or existing open space. This is a major critique of buyout programs

because it limits the ecological benefits of open space restoration [37]. Future research should identify

policies that incentivizes clustered buyouts as part of the process and account for current homeowner

incentives. For example, the Harris County buyout program provides incentives such as relocation

fees and prioritizes socially vulnerable households to encourage participation [38].

In addition, our approach makes other assumptions that could be explored as uncertainties, such

as discount rates and AALs. In addition, this model was static in time. Temporal uncertainties in the

region such as increased built environment, sea level rise, and climate change, could adversely impact
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the region. A more robust approach that account for these temporal variations can effectively identify

economically viable parcels for mitigation before their risk is increased. Finally, the model uses two

extreme storms to identify flood impact and elevation. Future research should explore more events

and better quantify risk to identify potential mitigation parcels.

5. Conclusions

Our analysis provides a robust method of decision making in the flood mitigation and planning

process. The results were measured using multiple objectives through a Pareto front to generate robust

projections of BCRs and properties protected by either elevation or property acquisition. The findings

accounted for three data uncertainties including market value, the cost to elevate a property, and the

cost to demolish a structure. These uncertainties and policy variations that include changing budgets

and project allocations was simulated through 10,000 scenarios in the Houston-Galveston Region.

This approach provides planners and policy makers with a viable method to implement both rational

and incremental planning that accounts for uncertainties and assumptions to make more informed

decisions. Additionally, the PRIM analysis found an ideal set of policy constraints can help to boost

both property selection and increase the overall return on investment for the selected mitigation options.

Our findings suggest that a robust decision-making process will benefit both vulnerable individuals

and the Federal Government through reduced disbursement of disaster grants for mitigation. Finally,

our research helps local jurisdictions identify areas that need protection which have been missed,

or those that have the wrong form of flood mitigation proposed.
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