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Abstract 18 

 19 

Tornadoes represent a significant threat to life and property and tend to evoke protective 20 
action in most people. Studies have suggested that many people travel to the nearest storm 21 

shelter or flee the area, rather than sheltering-in-place as recommended by the National Weather 22 
Service. While shelter-in-place is the recommendation of the National Weather Service, for 23 
tornado safety, few studies have quantified the risk reduction when compared to traveling to a 24 
storm shelter or fleeing the area. To address this knowledge gap, we developed an agent-based 25 
model, the Tornado Warning-Induced Shelter, Travel, and Evacuation Response Agent-Based 26 

Model (TWISTER ABM), to simulate protective action behaviors in the city of Norman, 27 
Oklahoma under eight protective action scenarios including: (1) everyone who responds to the 28 
warning (responders) seeks refuge in the nearest sturdy building (seek refuge), seeks shelter in a 29 

FEMA-rated shelter (seek shelter), or flees the area, (2) all responders flee the area, (3), all 30 
responders seek refuge (shelter-in-place), (4) all responders seek shelter, (5) all agents flee the 31 
area, (6) all agents seek refuge, (7) all agents seek shelter, (8) all agents do nothing. We found 32 

that, for an EF5 tornado hitting Norman at rush hour, the overall fatality rates by protective 33 
action type were 0.6% for those who took no action, 0.3% for those who sought refuge, 1.5% for 34 
those who sought shelter, and 1.1% for those fleeing the area. We also found that fatality rates 35 

were reduced by a factor of 6.6 for scenario 6 (shelter-in-place) over scenario 7 (travel to a 36 
FEMA-rated shelter). We believe that models such as TWISTER ABM can be used by the NWS 37 

and Emergency Managers in their attempts at communicating the effectiveness of shelter-in-38 
place. 39 

 40 
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Practical Applications 51 

Tornadoes are dangerous windstorms that can cause serious injury or death to people who do not 52 

take protective action. The National Weather Service states that sheltering-in-place is the safest 53 

form of protective action, but no studies to date have shown how much it can reduce casualties. 54 

We developed an agent-based model to study how changes in protective action type can 55 

influence the fatality rate (fatalities per 1,000 residents) caused by a tornado in the city of 56 

Norman, Oklahoma. We found that, for an EF5 tornado hitting Norman at rush hour, the overall 57 

fatality rates, for all model runs, were lowest for agents who sheltered-in-place (0.3%) and 58 

highest for those who traveled to public shelters (1.53%). We also found that fatality rates were 59 

lowest when all agents sheltered-in-place (0.24%) and highest when every agent responding to 60 

the warning traveled to public shelters (1.54%), a 6.6x reduction for shelter-in-place. We believe 61 

that models such as TWISTER ABM can be used by the NWS and Emergency Managers in their 62 

attempts at communicating the effectiveness of shelter-in-place. 63 

 64 
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Introduction 70 

Tornadoes are violent storms with wind speeds potentially exceeding 320 km/h. Tornadoes are 71 

capable destroying even sturdy buildings, crumpling mobile homes, flipping cars and trucks, and 72 

lofting people into the air (Edwards 2021). As a result of the extreme danger posed by tornadoes, 73 

the National Weather Service (NWS), Federal Emergency Management Agency (FEMA), and 74 

the American Red Cross all recommend taking immediate protective action in the event of a 75 

tornado warning. The primary recommendation is to shelter-in-place (in an interior room on the 76 

lowest level of the building or in a specially constructed storm shelter), if inside a sturdy 77 

building, or to drive to the nearest sturdy building, if outside, in a vehicle, or in a mobile home as 78 

even weak tornadoes can potentially be deadly in those circumstances (Schmidlin 1997; 79 

Schmidlin et al. 2002; Farley 2007; Edwards 2021). 80 

Longer distance travel, such as to flee the area or travel to a non-local public shelter, is generally 81 

not recommended as vehicles can be dangerous during tornadoes. While the number of motor 82 

vehicle fatalities in tornadoes in the US is low (8-9% according to studies by Paulikas and 83 

Schmidlin (2017) and Fricker and Friesenhahn (2022)), vehicles provide little protection against 84 

tornado-strength winds or large debris. Wind speeds as low as 139 km/h may roll or loft vehicles 85 

(Paulikas et al. 2016; Paulikas and Schmidlin 2017), falling debris can crush vehicles (Schmidlin 86 

2009) and wind-launched projectiles can pierce vehicles causing injury or death (Blair and 87 

Lunde 2010). Vehicles can and have been safely used to flee from tornadoes (Carter et al. 1989; 88 

Duclos and Ing 1989; Daley et al. 2005); however, tornadoes can suddenly change direction 89 

(Nixon and Allen 2021), their full circulation is not always visible (Wurman et al. 2014), and 90 

debris can be launched from significant distances (Snow et al. 1995; Black et al. 2019) making it 91 

difficult to know one is in a safe position relative to the tornado. In addition, travel on limited 92 



access roads (e.g., interstates) can prevent immediate escape from an approaching tornado (Blair 93 

and Lunde 2010), and heavy traffic can result in slow movement or grid-locked roads potentially 94 

placing hundreds of vehicles in harm’s way (Garfield and Smith 2014; Hatzis and Klockow-95 

McClain 2022). 96 

Despite the NWS recommendations, many people take to the roads to drive to public shelters or 97 

evacuate. A study by Hammer and Schmidlin (2002) on responses to the May 3, 1999 Oklahoma 98 

City tornado found that 21% of the respondents reported driving to a shelter, someone else’s 99 

home or to somewhere outside the at risk area. Another study by Sherman-Morris (2010) of 100 

university student responses to a 2008 tornado warning in Mississippi found that 11.1% of 101 

students reported driving somewhere else after the warning was issued. A number of behavioral 102 

intent surveys have had similar findings, although these are not always indicative of actual 103 

responses (Sorensen 2000). Among surveyed residents of Calgary, Canada, Durage et al. (2014) 104 

found that 16.6% of those at home said they would leave the home in search of a neighborhood 105 

shelter or to flee the area, while 58% of those on the road said they would flee the area. A similar 106 

survey of residents of Austin, Texas by Schultz et al. (2010) found that among those at home 107 

18% said they would leave home to get out of the tornado’s path while 39% of those driving said 108 

they would stay in the car and drive away from the tornado. A final nationwide survey by 109 

Ripberger et al. (2015), found that while the intended response rate to tornado warnings 110 

increased as tornado intensity increased (77% (EF0) to 95% (EF5)) so to did the likelihood that 111 

people intended to leave home to find a shelter or flee the area in response (11% (EF0) to 39% 112 

(EF5)). 113 

While shelter-in-place is the recommendation of the NWS, for tornado safety, it is unclear 114 

exactly how much it reduces tornado risk relative to travelling to a local storm shelter or fleeing 115 



the area. One way to assess this difference is through the simulation of protective action 116 

behaviors and hazard impacts. Evacuation modelling has been used to simulate evacuations in 117 

response to many types of hazards including tsunamis, hurricanes, wildfires, and chemical spills 118 

(Chen et al. 2006; Beloglazov et al. 2016; Wang et al. 2016; Watts 2018). In such models, 119 

evacuees travel via pedestrian or road networks from their position at outset of the hazard to 120 

some safe location, either in a building or out of the at-risk area. These models rely on detailed 121 

transportation networks and are used to determine variables such as (1) the evacuation clearance 122 

time for an evacuation (Zockaie et al. 2014; Wang et al. 2016; Kimms and Maiwald 2018), (2) 123 

the influence of mitigation efforts, such as staged (phased) evacuations (Zhang et al. 2014), and 124 

contraflow (Wolshon 2001), on evacuation clearance time, (3) as well as potential casualties 125 

among evacuees who are unable to complete their trip in time (Wang et al. 2016). 126 

To assess the question of the effectiveness of the shelter-in-place paradigm, we have developed 127 

one such agent-based modeling framework for studying protective action behaviors in response 128 

to tornado warnings. We use this model to perform a case study of a violent tornado hitting a 129 

community within the city of Norman, Oklahoma, during rush hour, to show how the shelter-in-130 

place paradigm reduces both fatalities, and the time require to take protective action, when 131 

compared to other safety paradigms (e.g., evacuation or travel to storm shelters that are Federal 132 

Emergency Management Agency (FEMA) rated to withstand EF5 level winds). 133 

 134 



Development of tornado warning-induced shelter, travel and evacuation 135 

response agent-based model (TWISTER ABM) 136 

The Tornado Warning-Induced Shelter, Travel, and Evacuation Response Agent-Based Model 137 

(TWISTER ABM) was designed as a modification to the Agent-Based Tsunami Evacuation 138 

Model (ABTEM) by Wang et al. (2016). ABTEM was designed in the NetLogo Agent-Based 139 

Modeling (ABM) platform (Wilensky 1999), a free open-source software that has an easy to 140 

learn programming language and is on its way to becoming a standard tool in the development of 141 

ABMs (Thiele et al. 2012). NetLogo allows users to simulate multiple agent types at once and 142 

define many parameters that can be explored to identify emergent phenomenon and enables them 143 

to visualize these phenomena over time (Railsback et al. 2006). NetLogo is well suited to 144 

community-scale evacuation modeling due to its ability to ingest GIS data and to study agent 145 

interactions which can lead to emergent behavior (Pan et al. 2007; Wang et al. 2016). In the 146 

ABTEM, Wang et al. (2016) simulate an evacuation of the city of Seaside, Oregon from a near-147 

field tsunami caused by an earthquake on the Cascadia Subduction Zone. The agents choose to 148 

evacuate, either on foot or by car, to a horizontal or vertical tsunami shelter. A number of 149 

parameters control the agents’ speeds as well as the percentage choosing to evacuate on foot or 150 

by car and the evacuation wait time. All travel in the model is by the road network with all roads 151 

considered one-way with one lane and a constant speed limit of 55 km/h. Following Wang et al 152 

(2016) we assume the roads remain clear throughout the evacuation and that there are no 153 

accidents. Travel by car is governed by the General Motors (GM) car-following model (Chandler 154 

et al. 1958; Herman et al. 1959). We set the model parameters as in Mostafizi et al (2017) to 155 

account for the reduced perception-reaction time (due to alertness) and increased acceleration 156 

and deceleration rates common during an emergency. The ABTEM has been used to study how 157 



fatalities vary by dominant evacuation mode (on foot or by car) (Mostafizi 2016; Wang et al. 158 

2016), the effectiveness of vertical tsunami evacuations (Mostafizi et al. 2018, 2019) and 159 

unplanned network disruptions due to a tsunami (Mostafizi 2016; Mostafizi et al. 2017). 160 

In the TWISTER ABM we consider how agents (hereafter, all references to agents will refer to 161 

all simulated persons within the model) travel and shelter or evacuate in response to a tornado 162 

warning. To do this, we performed extensive modifications to the ABTEM, including to the 163 

hazard, decision-making and fatality models. We also significantly modified the population 164 

distribution to represent the daily migration between home, work, play and errands and added 165 

background traffic to represent the impact of time of day on travel times. Like the ABTEM, 166 

TWISTER ABM has many parameters that can be controlled to test differences in fatality rate 167 

(per 1000 persons) or evacuation times due to factors such as the time of day, the amount of lead 168 

time before the tornado hits, the magnitude, width and speed of the tornado, and the number of 169 

available Federal Emergency Management Agency (FEMA) rated shelters (shelters that can 170 

withstand even the strongest tornadoes with winds exceeding 321.9 km/h (those rated five on the 171 

Enhanced Fujita (EF) scale)) (McDonald and Mehta 2006; FEMA 2021). Fig. 1 shows a 172 

screenshot of the NetLogo simulation environment. In Fig. 1, grey shading represents the 173 

damage path of the tornado with darker color cells experiencing higher wind speeds with a black 174 

tornado icon representing the current position of the center of the tornado, small squares 175 

represent buildings that are not FEMA-rated shelters (called refuges hereafter), large squares 176 

represent FEMA-rated shelters (called shelters hereafter), stars represent evacuation points, small 177 

x’s represent residents who have been killed by the tornado, flags represent residents who have 178 

successfully evacuated, dots represent residents who are taking no action, circles represent 179 

residents who are monitoring the situation, small triangles represent residents who are travelling 180 



to refuge, large triangles represent residents who are traveling to shelter, and arrow heads 181 

represent residents who are evacuating.  182 

In the current version of the model, we assume that roads impacted by the tornado are navigable; 183 

however, it is entirely possible that sections of the road could be damaged by the tornado or 184 

covered in debris making them impassable (Bohonos and Hogan 1999). Like ABTEM, 185 

TWISTER ABM does have a functionality to break road network links to simulate network 186 

disruptions and this may be explored in future studies. As in ABTEM, all resident agents are 187 

assumed to be autonomous and heterogenous with respect to their characteristics. All agent 188 

choices are influenced by internal characteristics (e.g., age, race) and the environmental cues 189 

(e.g., seeing or hearing the tornado) and their movement is influenced by agent interactions along 190 

the road network. Agent demographics are based on the American Community Survey (ACS) 191 

from the U.S. Census Bureau for the city of Norman. Oklahoma in 2019 192 

(https://data.census.gov). Agents’ decisions can change throughout the simulation; however, 193 

agents who choose to take protective action (seek protection in the nearest available sturdy 194 

building (i.e., not a mobile home) (seek refuge), seek protection in the nearest available building 195 

that is a FEMA-rated shelter (seek shelter), or flee the area (evacuate)) rarely change their 196 

decisions. The agents’ ability to make protective action decisions during a tornado warning is 197 

based on responses from the Severe Weather and Society (WX Survey), a survey issued since 198 

2017 where a representative sample of U.S. adults are asked recurring questions regarding 199 

forecast and warning reception, comprehension, and response, as well as one-time questions 200 

about important climate or weather topics such as weather impacts and severe weather 201 

climatology (Ripberger et al. 2019) (see Appendix 2 for more details). See Table 1 for a listing 202 

of key variables for agents. The primary outputs of the model are the fatality count, duration and 203 

https://data.census.gov/


distance of trips to refuges, shelters, and evacuation points, and the time required to reach the 204 

protective action destination. We chose to focus on fatalities over other injuries as this was the 205 

focus of the ABTEM (Wang et al. 2016; Mostafizi et al. 2017). Each model run begins with the 206 

setup of the model world and the issuance of a tornado warning, agents then proceed to make a 207 

decision regarding the type of protective action they take (if any) and then move towards their 208 

chosen destination. The model run ends with the dissipation of the tornado (see Fig. 2). 209 

Study area and hazard scenario 210 

This study takes place in the city of Norman in central Oklahoma. Norman is a city with an area 211 

of 463 km2 and an estimated 2019 population of 124,880. The population of Norman is 212 

predominantly white (77.8%), non-Hispanic (91.5%) and in the middle class (median household 213 

income around $58,000) (U.S. Census Bureau 2019). We chose 2019 as the sample year for 214 

demographic information as if falls within the available years of weather survey data (2017-215 

2021) (Ripberger et al. 2020a, b, c, d, 2021). Norman is in an area of high risk for tornadoes 216 

(Gensini and Brooks 2018; Moore and DeBoer 2019), including violent (EF4-5) tornadoes 217 

(Doswell et al. 2012; Hatzis et al. 2019) so it was well suited for this study. According to the 218 

National Weather Service (NWS), it has been directly impacted by tornadoes 31 times since 219 

1890, including three EF4 tornadoes in 2010 and 2019 (NWS 2020a). The neighboring city of 220 

Moore has been impacted 23 times since 1890, including two EF5 tornadoes in 1999 and 2013 221 

(NWS 2020b) that impacted populated areas causing many fatalities (Brooks and Doswell 2002; 222 

Burgess et al. 2014). Due to computational constraints, we restricted our study area to a 32.1 km2 223 

area in western Norman surrounding the I-35 corridor (see  224 

Fig. 3). 225 



The deadliest tornado to hit the Oklahoma City metropolitan area occurred in the early evening 226 

of May 3, 1999. On this day, a 1.6 km wide EF5 tornado (with Doppler measured wind speeds of 227 

484.4 km/h (Edwards 2021)) tracked 59.5 km across the Oklahoma City area causing 36 direct 228 

fatalities in the communities of Bridge Creek, Newcastle, Oklahoma City, Moore, Del City, and 229 

Midwest City (NWS 1999; Speheger et al. 2002). Since this tornado passed within 2.7 km of 230 

Norman, it could have easily impacted the city (NWS 1999). In this study we imagine a case 231 

where a tornado of the same width (1.6 km), magnitude (EF5), and ground speed (45.1 km/h) as 232 

the May 3, 1999 Oklahoma City tornado, hits western Norman during rush hour (1700). 233 

Monte Carlo simulation 234 

Many components of TWISTER ABM are stochastic in nature to account for uncertainties in the 235 

way people make protective action decisions during tornado warnings, the actual location of 236 

people throughout the city at a given hour, and the location of storm shelters (the locations of 237 

homes with personal storm shelters is unknown and there are no official public shelters within 238 

the city of Norman). To capture this stochasticity, we conduct a series of 20 Monte Carlo 239 

simulations for each experiment (see Appendix 1 for the justification of using 20 simulations) 240 

using the Behavior Space module in NetLogo (Wilensky 1999).  241 

Model components 242 

The model requires many data sets including building points (centroids of buildings including 243 

data about the maximum EF level wind the building can withstand and the municipal zone the 244 

building falls within), terminal network points (points along the road network beyond which the 245 

agent will be considered safely evacuated), road network, park land (polygons representing 246 

municipal parks), agent demographics, EF wind field (percentage of a tornado’s area 247 



experiencing winds at each EF level), milling time (waiting time before an agent makes a 248 

decision), road usage (frequency with which each road type (e.g., interstate, arterial) is used), 249 

mean tornado width, hourly probability of location, probability of tornado warning reception, 250 

comprehension, and response, probability of taking protective action. The derivation of each of 251 

these data sets is described in the Supplemental Information. The model itself consists of five 252 

submodels: population distribution, travel and background traffic, decision-making and 253 

protective action, fatality, and tornado hazard which are described below. See Appendix 2 for 254 

more details on the data sets used by the model. 255 

Population distribution and normal movement 256 

The number of people located in a community varies throughout the day, week, and seasons as 257 

people travel to work, visit friends, spend time outdoors, take vacations, run errands, etc. To take 258 

into account these daily migration patterns, the initial locations of the agents are based on the 259 

simulated time of day and the typical daily movement patterns of residents of the southern and 260 

midwestern U.S. according to the American Time Use Survey (ATUS). Agents are assigned an 261 

initial location at random based on where the ATUS results say people are located (e.g., at work, 262 

home, etc.) (see full details in Appendix 3). 263 

Agents are also assigned a secondary location that the agent will head towards at a random 264 

model time step (between 0 and 3600) if they do not decide to take protective action first. The 265 

secondary location is similarly selected via a weighted random draw only it is based on the 266 

ATUS probabilities for the hour following the simulation. If the agent’s initial location is on the 267 

road they will immediately head towards the secondary location, otherwise they will remain 268 

stationary until either the random time step is reached, or the agent decides to take protective 269 

action.  270 



According to the 2020 U.S. census, the adult population (18 years of age and older) of the study 271 

area is 23,111 persons. However, due to computational constraints of NetLogo, with respect to 272 

agent-to-agent interactions, we have chosen to limit the number of agents simulated to 4000 (see 273 

Appendix 4 for more details on the justification for limiting the number agents to 4000). 274 

Travel and background traffic 275 

Travel in the TWISTER ABM is very similar to that described by the original agent-based 276 

tsunami evacuation model (Wang et al. 2016). Agents mostly travel by car along a simplified 277 

road network as they move from building to building or towards an evacuation point (one of the 278 

terminal network points) (see full details regarding road network travel in Appendix 5).  279 

While most travel occurs via car along the road network agents must travel on foot between 280 

buildings or outdoor points and the road network. Additionally, travel was on foot if the 281 

destination was closer on foot than via the road network. Travel was limited to by car and on foot 282 

as public transportation is of limited use in a tornado evacuation given the limited number of 283 

routes and frequent stops for public transportation and the short lead time of tornadoes (less than 284 

15 minutes on average (Strader et al. 2021)). Additionally a study on mobile home residents in 285 

the southern US by Schmidlin et al. (2009) suggested people will drive to shelters if they are 286 

further than 200 m and walk otherwise. Pedestrian speeds follow the logic of Wang et al. (2016) 287 

and are assigned to each agent based on a random draw from a normal distribution where the 288 

mean speed is 5.4 km/h (corresponding to a fast walk) and the standard deviation is 0.7 km/h 289 

yielding a typical range from a slow walk (3.6 km/h) to slow run (7.2 km/h). 290 

We add background traffic agents to the road network to represent cars that are on the road but 291 

not participating in the evacuation (e.g., passing through the study area). Due to computational 292 

restraints, we were unable to simulate the full population of the city of Norman and adding 293 



background traffic was a simple way to adjust evacuation times during rush hour and other busy 294 

traffic periods. The background traffic agents start at one terminal network point on a road and 295 

typically travel to the opposite terminal network point on the same road, however 20% will 296 

choose a random alternate terminal point as their destination. The waiting time for the next 297 

background traffic agents to be added to the road network varies according to the following 298 

equation. 299 

𝑤ℎ = 𝑓𝑙𝑜𝑜𝑟 (𝑤𝑝𝑡 (
𝑝𝑝𝑡

𝑝ℎ
))     (1) 300 

where 𝑤𝑝𝑡 is the pre-defined waiting time at the peak traffic time, 𝑝𝑝𝑡 is the percentage of agents 301 

who are on the road at the peak traffic hour, and 𝑝ℎ is the percentage of agents who are on the 302 

road at the simulated hour. For these simulations, we assume the tornado warning is issued on a 303 

weekday when the typical peak traffic hour is 1700 LT. We set 𝑤𝑝𝑡 to 10 s as multiple tests have 304 

indicated that a waiting time of 10 s yields a reasonable rush hour traffic pattern. The 305 

background traffic agents neither respond to the tornado warning nor are impacted by the tornado 306 

hazard but instead act only as a barrier for the movement of the agents to represent how the time 307 

of day can influence traffic levels and thus the potential time required to take protective action. 308 

Decision-making and protective action 309 

The tornado warning decision making process is a complex social process that begins with the 310 

issuance of a tornado warning by the National Weather Service (NWS) and ends with the public 311 

making a decision about whether or not to take protective action and which action to take if any 312 

(Brotzge and Donner 2013). The agent goes through a five-step process to make their protective 313 

action decision: (1) assesses the credibility of the threat as well as their ability to take action and 314 

the efficacy of such action, (2) checks to see if they receive the warning, (3) attempts to 315 



understand the warning and the risk to their life, (4) decides whether to respond or not, and (5) 316 

decides the protective action to take, if any (Brotzge and Donner 2013). Each decision is treated 317 

as a random weighted draw from a set of decisions based on their attendant probabilities. For 318 

example, if an agent has a 90% chance of receiving a tornado warning they would perform a 319 

weighted random draw where 90% of the time they would receive the warning and 10% of the 320 

time they would not. 321 

Agents who have decided to take protective action then make a second decision regarding the 322 

type of action to take: monitor the situation, seek refuge, seek shelter, or evacuate. TWISTER 323 

ABM allows for eight different scenarios regarding the type of protective action each agent 324 

takes: (1) everyone who responds to the warning (responders) seeks refuge, seeks shelter, or 325 

evacuates, (2) all responders evacuate, (3), all responders shelter-in-place (seek refuge only), (4) 326 

all responders seek shelter only, (5) all agents evacuate, (6) all agents shelter-in-place, (7) all 327 

agents seek shelter, (8) all agents do nothing. Scenario 1 represents the normal situation where 328 

people have a choice in which action they take (Ripberger et al. 2019), while the other scenarios 329 

represent extreme cases where everyone either has a choice between doing nothing and one 330 

specified action or everyone responds to the warning in one specified way. 331 

The agents make one final decision as they are travelling towards their protective action 332 

destination. If they see the tornado directly ahead of them (within 5 km), and it appears closer 333 

than the distance to their destination, they make a decision on whether to continue to their 334 

destination along their current route or to change the route to their destination or their destination 335 

itself. We assume the tornado is visible at a distance of 5 km as the average human can see about 336 

5 km due to the Earth’s curvature (Burke 2020) and that obstruction due to rainfall or hail might 337 

limit sight beyond the horizon (Edwards 2021)). To make this decision they perform a random 338 



binary draw weighted by their risk aversion parameter. If they draw ‘yes’, they attempt to find a 339 

new route to their chosen destination that avoids the tornado. If such a route cannot be found, 340 

they turn around and choose a new destination in the opposite direction of the tornado. See 341 

Appendix 6 for more details about the decision-making process. 342 

Tornado hazard 343 

The tornado hazard in TWISTER ABM is simulated as a separate agent that moves across the 344 

study area impacting buildings and resident agents as it moves. The tornado hazard is comprised 345 

of the agent (representing the center of the tornado) and its attendant wind field. The wind field 346 

decreases in intensity away from the agent until it reaches the tornado’s maximum radius and the 347 

proportion of the wind field at each intensity level (EF-scale) is described by the Nuclear 348 

Regulatory Commission’s (NRC) tornado wind field model (Ramsdell et al. 2007). In the NRC 349 

model, only a fraction of the area of a tornado is covered by the strongest winds. For example, 350 

for an EF5 tornado, 53.8% of the area experiences EF0 level winds while only 1.7% experiences 351 

EF5 level winds. To determine the spatial extent of each wind intensity level we calculate the 352 

radius of each level surrounding the tornado as defined by the following equation. 353 

𝑟𝑚 = (∑ 𝐴𝑖
𝑚
𝑖=5 ) × 𝑟0     (2) 354 

where 𝑚 is the EF level of the radius you want to calculate, 𝐴𝑖 is the percentage of the tornado’s 355 

area covered by winds at the 𝑖th EF level (defined in the EF Wind Field file, see Supplemental 356 

Information for full details), 𝑟0 is the radius of the EF0 winds (half the maximum width of the 357 

tornado), and 𝑚 is EF level. As the tornado moves across the study area it impacts any buildings 358 

that fall within its wind field. Depending upon the intensity of the winds that each building 359 

experiences they may suffer damage. Each building has a maximum EF level that it can 360 

withstand (see Supplemental Information for full details), once that level is exceeded for a 361 



building it is considered destroyed. For example, a one- to two-family home experiences total 362 

destruction at EF4 level winds (McDonald and Mehta 2006); thus, any one- to two-family home 363 

experiencing EF4 level winds or higher will be destroyed. The path that the tornado takes across 364 

the study area can be set by the user by clicking on the interface at any two points representing 365 

the starting and ending points for the tornado. If the user doesn’t select the starting and ending 366 

points, the tornado defaults to starting in the southwest corner of the study area and ends in the 367 

northeast corner. As tornadoes tend to move from southwest to northeast in Oklahoma (Suckling 368 

and Ashley 2006), we use the default setting for this study. See Table 2 for a listing of key 369 

variables for the tornado agents. 370 

Fatalities 371 

Resident agents can be killed if they are in a destroyed building, a tipped car, or are lofted by the 372 

tornado. Once an agent becomes impacted by the tornado’s wind field the agent immediately 373 

stops moving (we do this for simplicity, but we assume any person experiencing a tornado would 374 

stop and shelter as best they can wherever they are once the tornado hits). We assess the fatality 375 

status of the agent based on the maximum EF level winds they experience as well as the agent’s 376 

location at the time of impact. Agents who are in a FEMA-rated shelter or who have reached 377 

their evacuation point (successfully escaped the at-risk area) are assumed to be safe. Agents who 378 

are inside a building (either seeking refuge or not) are safe if the building is not destroyed. If the 379 

building is destroyed, a random binary draw is performed weighted by the type of building the 380 

agent is in (20% for mobile homes (Brooks and Doswell 2002) or 1% for other buildings (Brooks 381 

et al. 2008; Prevatt et al. 2012). For example, an agent who is inside a one- to two-family home 382 

that is destroyed has a 1% chance of being killed (drawing ‘yes’). Agents who are inside a car 383 

are assumed killed if the car is tipped. Studies by Schmidlin et al. (2002) and Paulikas and 384 



Schmidlin (2017) have suggested that about 4%, 15%, and 31% of cars will tip over in EF1 – 385 

EF2, EF3 – EF4, and EF5 level winds respectively. We use those percentages as probabilities 386 

that a car will be tipped if it is impacted by the respective wind intensities. A binary random 387 

draw weighted by the wind intensity level (4% for EF1 – EF2, 15% for EF3 – EF4, and 31% for 388 

EF5 level winds) is performed to determine if the car is tipped and the agent killed. For example, 389 

an agent in a car experiencing EF4 level winds has a 15% chance of their car being tipped and 390 

them being killed (drawing a ‘yes’). Agents who are outside are assumed killed if the wind is 391 

strong enough to loft them (overcome the force of gravity) which happens around 177 – 217 392 

km/h (Long and Weiss 1999; Agrawal 2000) (i.e., EF2 – EF3 level winds (McDonald and Mehta 393 

2006)). For our model, we assume agents who are outside are lofted at EF2 level winds. While 394 

people have survived being lifted by tornadoes (Katsura and Conner 2002), it is assumed that 395 

most would not be due to the potential damage to the body from debris as well as the damage 396 

done by the fall afterward (Ono 2002). For simplicity, we do not consider indirect fatalities (e.g., 397 

death due to a fire in a damaged home (Brown et al. 2002)) and assume fatalities only occur in 398 

the path of tornado. 399 

Sensitivity analyses and model validation 400 

To showcase TWISTER ABM’s performance, we conducted several sensitivity analyses to 401 

determine how the model responded to variations in tornado intensity (EF level), lead time, time 402 

of day (for a weekday), percentage of residences with shelters, and number of public shelters. 403 

For all analyses (except where we are varying the specified parameter), we set the parameters as 404 

defined in Table 3.  405 

We vary the parameters for the sensitivity analyses as described in Table 4. We perform Kruskal-406 

Wallis tests to determine if there were significant differences between the group medians for the 407 



fatality rate, mean trip duration for trips to refuges, shelters and evacuation points, and mean 408 

response rate between the dependent variables (e.g., tornado intensity). If significant differences 409 

were found (𝑝 ≤ 0.05), we then performed the post-hoc Dunn test (with Bonferroni adjustment) 410 

(Dunn 1964), to determine which groups were different. We chose the non-parametric Kruskal-411 

Wallis test as many of the model output variables are non-normal for at least some of the groups. 412 

The Dunn test is a common post-hoc test for use with the Kruskal-Wallis test and we use the 413 

Bonferroni adjustment to the p-value to help reduce the probability of committing a type I error 414 

(Dinno 2015).  415 

We validate the model in two ways: comparing model travel time to expected trip duration 416 

(estimated from Google Maps data) and by comparing the simulated fatality rate (per 1000 417 

residents (‰)) living within the tornado’s path) with the observed fatality rate for all significant 418 

(EF2-3) and violent (EF4-5) tornadoes that hit within 100 km of Oklahoma between 1995 and 419 

2020. For the travel time validation, we set the scenario to Scenario 5 (all agents evacuate) and 420 

simulate two times of day (0200 LT and 1700 LT) to test travel time when traffic is near the 421 

minimum and maximum. We set the number of agents to 100 and allowed them to choose their 422 

own route to the nearest evacuation point. All other parameters are as in Table 1. After the 423 

simulations completed, we used the Google Directions API (Google 2022) via the mapsapi 424 

package in R (Dorman 2022) to calculate the estimated travel times, between the agent’s starting 425 

and ending points at 0200 LT and 1700 LT, using the pessimistic, optimistic, and best guess 426 

traffic models to get a range of possible travel times. When the Google Directions API detected 427 

multiple routes between the starting and ending points, we calculated the mean travel time over 428 

all routes. While TWISTER ABM’s traffic flow is overly simplified, we felt justified in using 429 

Google Maps data as we were only interested in comparing travel times and not overall traffic 430 



flow. Using Google Maps data we could ensure our travel times were realistic. We conducted a 431 

paired Mann-Whitney test (Mann 1945; Mann and Whitney 1947) to determine if the simulated 432 

and best guess travel times were statistically similar. We also calculated Pearson’s correlation 433 

coefficient between the simulated and best guess travel times to determine the degree of 434 

association between the two and tested how often the simulated travel time fell between the 435 

pessimistic and optimistic travel times. 436 

For the fatality rate comparison, we start by selecting all tornado tracks for significant and 437 

violent tornadoes, which occurred between 1995 and 2020, from the Storm Prediction Center’s 438 

SVRGIS database (SPC 2021). While we only use 2019 demographic data from the city of 439 

Norman, Oklahoma for the agent specification, we felt justified in using 1995-2020 tornado 440 

fatality data as we needed more than one year’s worth of data for our analysis and a Kruskal-441 

Wallis test showed no significant differences between the fatality rates for the three decades 442 

(𝐻 = 1.152, 𝑝 = 0.562, 𝑑𝑓 = 2). Using the sf package in R we estimated the damage path of 443 

each tornado by creating a spatial buffer around the tornado tracks (the buffer width 444 

corresponded to the reported tornado width). We then selected only the damage paths that fell 445 

within 100 km of the state of Oklahoma and estimated the population residing in each path. We 446 

performed the same task for each of the significant and violent tornadoes simulated during the 447 

tornado intensity sensitivity test. To determine the population residing in the path we first created 448 

a 1 km resolution grid across a 100 km spatial buffer surrounding the state of Oklahoma and 449 

estimated the population in each grid cell for the 1990, 2000, 2010, and 2020 censuses (Manson 450 

et al. 2021) using area-weighting (following the methodology of Ashley et al. (2014)). We then 451 

estimate the population in the grid for the year of the tornado by linear interpolation between the 452 

preceding and following census, years assuming a constant trend, as follows 453 



𝑃𝑌 = {
𝑃𝐶1 +

𝑌−𝑌𝐶1

10
(𝑃𝐶2 − 𝑃𝐶1), 𝑌 < 2020

𝑃2010 +
𝑌−2010

10
(𝑃2020 − 𝑃2010), 𝑌 ≥ 2020

    (3) 454 

where 𝑃𝑜𝑝𝐶1 and 𝑃𝑜𝑝𝐶2 are the populations in the preceding and following census years 455 

respectively, 𝑃2010 and 𝑃2020 are the populations in 2010 and 2010 respectively, 𝑌 is the year of 456 

the tornado and 𝑌𝐶1 is the year of the preceding census. For each tornado, we performed a spatial 457 

intersection between the tornado path and the population grid and summed the population across 458 

the path. For the simulated tornadoes we assume the year is 2020. Once we have the population 459 

impacted by each tornado, we estimate the fatality rate as the number of fatalities divided by the 460 

population in the path (represented as fatalities per 1000 residents or ‰). We perform a Mann-461 

Whitney test to determine if the mortalities are different between the observed and simulated 462 

significant and violent tornadoes and compare the summary statistics for fatality rate as well.  463 

 464 

Effectiveness of shelter-in-place 465 

To determine how the National Weather Service’s recommended protective action paradigm 466 

(shelter-in-place) compared to other protective action paradigms we ran a series of simulations in 467 

TWISTER ABM for each of the following scenarios: (1) everyone who responds to the warning 468 

(responders) seeks refuge, seeks shelter, or evacuates, (2) all responders evacuate, (3), all 469 

responders shelter-in-place, (4) all responders seek shelter only, (5) all agents evacuate, (6) all 470 

agents shelter-in-place, (7) all agents seek shelter, (8) all agents do nothing. We set all 471 

parameters, except the scenario which we varied, as in Table 1. We perform Kruskal-Wallis tests 472 

to determine if there were significant differences between the group medians for the fatality rate, 473 

mean trip duration for trips to refuges, shelters and evacuation points, and mean response rate 474 



between the scenarios. If significant differences were found (𝑝 ≤ 0.05), we then performed 475 

Dunn tests (with Bonferroni adjustment), to determine which groups were different. 476 

Results 477 

General model behavior 478 

Fig. 4 shows the model progression for a typical run of the TWISTER ABM (parameters set as in 479 

Table 3) starting with the issuance of a tornado warning at time t = 0 minutes. Fig. 4a shows the 480 

initial distribution of the agents (dots) at the simulated time (1700 LT on a weekday) based on 481 

typical daily migration patterns (as defined by the American Time Use Survey). At this time, 482 

53% of the agents are at home, 27% are at work, 8% are on the road, and the rest are visiting 483 

friends, running errands/shopping or doing outdoor activities in a park. By seven minutes (Fig. 484 

4b) the milling period has ended for many agents, and they have begun to take protective action. 485 

By this time many have already completed their protective action (diamonds). By 15 minutes 486 

(Fig. 4c), the tornado has formed outside the study area (black triangle) and by 20 minutes (Fig. 487 

4d) it has entered the study area causing the first fatalities (x’s). The grey shading represents the 488 

damage path of the tornado with darker shades of grey indicating greater damage (stronger 489 

winds). The tornado continues to track through the study area (Fig. 4e) causing more fatalities 490 

until it exits the area (Fig. 4f) and dissipates at around 28 minutes. At the end of the simulation 491 

the total number of fatalities and the time it took each agent to complete their protective action 492 

(if they chose to act) are calculated to assess the severity of the simulated event. For this example 493 

simulation, there were 29 fatalities (7.3 fatalities per 1000 agents) and the mean time to complete 494 

a protective action was 14.1 minutes. 495 



Model validation 496 

Fatality rate 497 

The mean number of fatalities for significant (EF2-3) and violent (EF4-5) tornadoes hitting 498 

within 100 km of Oklahoma between 1995 and 2020 was 0.6 and 6.6 fatalities respectively (Fig. 499 

5). The corresponding mean fatality rates were 1.8 fatalities per 1000 residents (‰) and 3.3‰ 500 

respectively. The mean number of fatalities for simulated significant and violent tornadoes in 501 

Norman, Oklahoma in 2020 were 4.3 and 15.2 fatalities respectively. The corresponding mean 502 

fatality rate was 1.3‰ and 2.2‰ respectively. We find that TWISTER ABM overestimates the 503 

mean number of fatalities but underestimates the maximum number of fatalities as well as the 504 

mean fatality rate. A Mann-Whitney test confirmed that the observed and simulated mortalities 505 

for significant tornadoes were statistically different (𝑊 = 832, 𝑝 < 0.001); however, it also 506 

showed that the mortalities for violent tornadoes were similar (𝑊 = 177, 𝑝 = 0.33). We believe 507 

that the shorter simulated tornado paths (9.5 km (for all simulated tornadoes) vs 26.9 km for 508 

observed significant and 50.1 km for observed violent tornadoes) may explain the lower 509 

maximum mortalities for simulated tornadoes. While the mean mortalities are different between 510 

the simulated and observed tornadoes, the overall distribution of the simulated mortalities does 511 

fall within that of the observed mortalities. We maintain that this fact, combined with the 512 

statistical similarity between the simulated and observed violent tornado mortalities, imply that 513 

TWISTER ABM produces reasonable fatality estimates. 514 

Travel time 515 

To validate TWISTER ABMs ability to accurately capture travel times between locations within 516 

the study area we compared simulated travel times (to the nearest evacuation point) for 100 517 



random agents to the estimated travel times from the Google Directions API (using the best 518 

guess traffic model) (Google 2022) for the same trips. A paired Mann-Whitney test showed that 519 

the simulated and estimated travel times were statistically different for travel at both 0200 LT 520 

(𝑉 = 4831.5, 𝑝 < 0.001) and 1700 LT (𝑉 = 3898.5, 𝑝 < 0.001). While the estimated and 521 

simulated travel times are statistically different, we find that the Pearson’s correlation coefficient 522 

is strong (𝑅2 = 0.71) at 0200 LT and moderate (𝑅2 = 0.65) at 1700 LT (Fig. 6). We also find 523 

that the simulated travel time falls between the estimated travel times, using the pessimistic and 524 

optimistic traffic models, 27% of the time at 0200 LT and 55% of the time at 1700 LT. Given 525 

that TWISTER ABM assumes a simplified road network with one-lane roads and 55 km/h speed 526 

limits, we maintain that model simulates travel time reasonably well.  527 

Sensitivity tests 528 

Tornado intensity and width 529 

Fig. 7 shows the sensitivity of the fatality rate, mean trip duration, and the response rate to the 530 

tornado intensity and width. The mean fatality rate varied from 0‰ (EF0) to 4.8‰ (EF5) with 531 

minimum and maximum mortalities of 0‰ (EF) and 9.8‰ (EF5) respectively. A Kruskal-Wallis 532 

test showed that the fatality rate was sensitive to changes in the tornado intensity (𝐻 = 109.46, 533 

𝑝 < 0.001, 𝑑𝑓 = 5). The post-hoc Dunn test showed that the fatality rate significantly increased 534 

between EF0 and EF3 (𝑝 < 0.001) and between EF3 and EF5 (𝑝 = 0.008). The mean of the 535 

mean trip durations varied between 3.0 (EF0) and 3.4 minutes (EF4) with minimum and 536 

maximum mean trip durations of 2.9 (EF0) and 3.8 minutes (EF5) respectively. The mean trip 537 

duration was also sensitive to changes in tornado intensity (𝐻 = 53.92, 𝑝 < 0.001, 𝑑𝑓 = 5) 538 

with significant increases in duration between EF0 and EF3-5 (𝑝 < 0.001), EF1 and EF3 ((𝑝 =539 

0.007), EF1 and EF4-5 (𝑝 < 0.001) and EF2 and EF4=5 (𝑝 = 0.002). The mean response rate 540 



varied from 56.9% (EF0) to 62.2% (EF5) with minimum and maximum response rates of 55.3% 541 

(EF0) and 64.1% (EF5) respectively. The response rate was sensitive to tornado intensity as well 542 

(𝐻 = 88.96, 𝑝 < 0.001, 𝑑𝑓 = 5) with significant increases in the rate between EF0 and EF3 543 

(𝑝 < 0.001) and EF2 and EF5 (𝑝 = 0.002). While for each output variable the differences 544 

between the values for each consecutive EF level were not always significant, the general trend 545 

for each variable was an increase with increasing tornado intensity.  546 

Time of day 547 

Fig. 8 shows the sensitivity of the fatality rate, mean trip duration, and the response rate to the 548 

time of day. The mean fatality rate varied from 5.2‰ (0100 LT) to 6.2‰ (2100 LT) with 549 

maximum and minimum mortalities of 3‰ (0100 LT) and 10.5‰ (2100 LT) respectively. The 550 

fatality rate was not sensitive to the time of day (𝐻 = 3.38, 𝑝 = 0.64, 𝑑𝑓 = 5). The mean of the 551 

mean trip durations varied from 3.2 (1300 LT) to 3.7 minutes (0500 LT) with minimum and 552 

maximum mean trip durations of 2.9 (0900 LT) and 4.1 minutes (0500 LT) respectively. The 553 

mean trip duration was sensitive to the time of day (𝐻 = 71.85, 𝑝 < 0.001, 𝑑𝑓 = 5) with 554 

significant decreases between each of 0900 LT and 2100 LT (𝑝 < 0.001), 1300LT and 2100 LT 555 

(𝑝 < 0.001), and 1700LT and 2100 LT (𝑝 = 0.02) and significant increases between 0100 LT 556 

and 0900LT (𝑝 < 0.001), 0100 LT and 1300 LT (𝑝 < 0.001), 0100 LT and 1700 LT (𝑝 =557 

0.002), 0500 LT and 0900 LT (𝑝 < 0.001), 0500 LT and 1300 LT (𝑝 < 0.001), 0500 LT and 558 

1700 LT (𝑝 = 0.002). The mean trip duration followed the mean trip distance with greater 559 

distances (and durations) in the evening and overnight hours. The mean response rate varied 560 

from 41.4% (0100 LT) to 61.9% (1700 LT) with minimum and maximum response rates of 561 

39.8% (0100 LT) and 63.2% (1700 LT) respectively. The response rate is also sensitive to time 562 

of day (𝐻 = 107.80, 𝑝 < 0.001, 𝑑𝑓 = 5) with a significant increase between 0100 LT and 1300 563 



LT (𝑝 < 0.001) and a significant decrease between 1700 LT and 2100 LT (𝑝 < 0.001). We 564 

found the response rate was lowest when more agents were at home asleep (0100 LT – 0500 LT) 565 

and highest when more people were at home awake (1700 LT).  566 

Lead time 567 

Fig. 9 shows the sensitivity of the fatality rate, mean trip duration, and the response rate to the 568 

lead time. The mean fatality rate varied from 4.5‰ (60-minute lead time) to 6.0‰ (5-minute 569 

lead time) with minimum and maximum mortalities of 1.8‰ (60-minute lead time) and 12‰ 570 

(15-minute lead time) respectively. The fatality rate was sensitive to the lead time (𝐻 = 13.39, 571 

𝑝 = 0.02, 𝑑𝑓 = 5) with a significant decrease between 5- and 60-minute lead times (𝑝 = 0.01). 572 

The mean of the mean trip durations varied from 2.8 (0-minute lead time) to 4.3 minutes (60-573 

minute lead time) with minimum and maximum mean trip durations of 2.6 (0-minute lead time) 574 

and 6.5 minutes (60-minute lead time) respectively. The mean trip duration was sensitive to the 575 

lead time (𝐻 = 98.07, 𝑝 < 0.001, 𝑑𝑓 = 5) with significant increases between 0 and 15-60 576 

minutes (𝑝 < 0.001), 5 and 30-60 minutes (𝑝 < 0.001), and 15 and 45-60 minutes (𝑝 < 0.005). 577 

The mean response rate varied between 45.7% (0-minute lead time) and 65.4% (60-minute lead 578 

time) with maximum and minimum response rates of 44.2% (0-minute lead time) and 67.2% (45-579 

minute lead time) respectively. The response rate is also sensitive to lead time (𝐻 = 106.44, 𝑝 <580 

0.001, 𝑑𝑓 = 5) with significant increases between 0 and 15 minutes (𝑝 = 0.002) and 15 and 60 581 

minutes (𝑝 < 0.001).  582 

Shelter availability 583 

Fig. 10 shows the sensitivity of the fatality rate, mean trip duration, and the response rate to the 584 

percentage of residential buildings with shelters. The mean fatality rate varied from 5.0‰ (40% 585 



of residences) to 6.2‰ (1% of residences) with minimum and maximum mortalities of 2.5‰ 586 

(10% and 20% or residences) and 10.5‰ (1% of residences) respectively. The fatality rate was 587 

not sensitive to the percentage of residential buildings with shelters (𝐻 = 7.59, 𝑝 = 0.18, 𝑑𝑓 =588 

5). The mean of the mean trip durations varied from 3.2 (80% of residences) to 3.4 minutes (5% 589 

of residences) with minimum and maximum mean trip durations of 3.0 (80% of residences) and 590 

3.9 minutes (5% of residences) respectively. The mean trip duration was sensitive to the 591 

percentage of residential buildings with shelters (𝐻 = 25.44, 𝑝 < 0.001, 𝑑𝑓 = 5) with a 592 

significant decrease between 5% and 80% (𝑝 < 0.001), 10% and 80% (𝑝 < 0.001), and 20% 593 

and 80% (𝑝 = 0.02). We expected that increasing the number of residential shelters would 594 

reduce travel time as agents who were seeking shelter had more options. Those agents who were 595 

at home when they made their decision would be less likely to have to leave home to reach a 596 

shelter as the number of residential shelters increased. The mean response rate varied from 597 

61.8% (80% of residences) to 62.1% (5% and 10% of residences) with minimum and maximum 598 

response rates of 60.0% (5% of residences) and 64.3% (80% of residences) respectively. The 599 

response rate is not sensitive to the percentage of residential buildings with shelters (𝐻 = 4.32, 600 

𝑝 = 0.50, 𝑑𝑓 = 5). We did not expect the response rate to be impacted by the number of 601 

residential shelters as residential shelters are only available to the occupant of that residence and 602 

increasing residential shelters would not make more shelters available for each agent. 603 

Fig. 11 shows the sensitivity of the fatality rate, mean trip duration, and the response rate to the 604 

number of public shelters. The mean fatality rate varied from 5.0‰ (1000 and 1800 shelters) to 605 

5.6‰ (50 shelters) with minimum and maximum mortalities of 2.5‰ (200 shelters) and 9.3‰ (5 606 

shelters) respectively. The fatality rate was not sensitive to the number of public shelters (𝐻 =607 

4.12, 𝑝 = 0.53, 𝑑𝑓 = 5). The mean of the mean trip durations varied from 2.8 (1000 shelters) to 608 



2.3 minutes (5 and 20 shelters) with minimum and maximum mean trip durations of 2.7 (1000 609 

shelters) and 3.7 minutes (5 shelters) respectively. The mean trip duration was sensitive to the 610 

number of public shelters (𝐻 = 94.48, 𝑝 < 0.001, 𝑑𝑓 = 5) with significant increases between 5 611 

and 200+ shelters (𝑝 < 0.001), 20 and 200+ shelters (𝑝 < 0.001), 50 and 200 shelters (𝑝 =612 

0.02), and 50 and 1000+ shelters (𝑝 < 0.001). The mean response rate varied from 62.0% (50 613 

and 1000 shelters) to 62.3% (1800 shelters) with minimum and maximum response rates of 614 

60.3% (200 shelters) and 64.8% (200 shelters) respectively. The response rate is not sensitive to 615 

the number of public shelters (𝐻 = 4.62, 𝑝 = 0.46, 𝑑𝑓 = 5). While not statistically significant, 616 

these findings are also in line with the literature which suggests that the presence of shelters 617 

reduces fatalities (Merrell et al. 2002; Simmons and Sutter 2007) and increases in shelter 618 

availability can lead to increased self-efficacy which can increase tornado warning response (Ash 619 

2017; Huntsman et al. 2021; Jauernic and Van Den Broeke 2017). 620 

Effectiveness of shelter-in-place 621 

To determine how effective shelter-in-place was at reducing fatality rate and travel time, 622 

compared to other protective action paradigms, we ran a series of simulations in TWISTER 623 

ABM for each of the scenarios 1 – 8. The results can be found in Fig. 12. Through a series of 624 

Kruskal-Wallis tests, we found that the fatality rate (𝑊 = 115.0, 𝑝 < 0.001, 𝑑𝑓 = 7) and mean 625 

completion time (time required to reach the selected protective action destination; 𝑊 = 127.4, 626 

𝑝 < 0.001, 𝑑𝑓 = 6) were sensitive to the selected protective action scenario. The overall fatality 627 

rates, among all scenarios, for agents by protective action type were 5.5‰ (taking no action), 628 

3.3‰ (seeking refuge in the nearest sturdy building), 15.3‰ (seeking shelter in a FEMA-rated 629 

shelter), and 10.5‰ (fleeing the area). The fatality rate was lowest for Scenario 6 (everyone 630 

shelters-in-place; 2.4‰) and highest for Scenario 4 (all of those who respond to the warning seek 631 



shelter; 15.4‰; this difference was statistically significant by a Dunn test (𝑝 < 0.001)), a 6.6x 632 

reduction in fatality rate for the shelter-in-place scenario. The high fatality rate in Scenario 4 was 633 

a result of all responding agents seeking shelter in their own homes (if they have a shelter) or in a 634 

limited number of public shelters (20). This resulted in significant traffic jams leading to the 635 

shelters and meant more people were stuck on the road when the tornado hit. Two of the three 636 

lowest mortalities were for shelter-in-place scenarios; however, interestingly, the second lowest 637 

fatality rate (4.0‰) was for the scenario where no one responds. While this may seem 638 

counterintuitive, the fact that most agents (who are not taking protective action) are indoors 639 

means that most agents have some protection from the tornado, reducing the likelihood of death. 640 

The mean of the mean completion times was highest for Scenario 2 (14.3 minutes) and lowest 641 

for Scenario 6 (6.7 minutes; this difference was significant by a Dunn test (𝑝 < 0.001)).  642 

Scenarios 4 and 7 have some of the lowest mean completion times (9.2 and 7.4 minutes 643 

respectively); however, they also have the lowest mean completion rates (percentage of agents 644 

who complete their protective action; 15.6% and 18% respectively). This is because so many of 645 

the agents were traveling to the same sheltering destination creating large traffic jams allowing 646 

fewer agents to reach their destinations. Scenario 6 had the greatest mean percentage of agents 647 

completing their protective action by the time the lead time expired (within 15 minutes; 93%) 648 

while Scenario 4 had the lowest mean percentage (11.7%; other than for Scenario 8 when no one 649 

responded). For each simulation in the experiment, nearly half, or more, of the agents who 650 

successfully completed their protective action by the end of the model run, did so before the 651 

tornado formed. 652 



Discussion and Conclusion 653 

We developed the Tornado Warning-Induced Shelter, Travel, and Evacuation Response Agent-654 

Based Model (TWISTER ABM) as a framework for studying protective action behaviors during 655 

tornado warnings. We found that the simulated fatality rate was sensitive to changes in tornado 656 

intensity and width, and lead times but not sensitive to start times or the number of shelters 657 

available. 658 

The increase in simulated fatality rate with increasing tornado intensity was in line with the 659 

literature which suggests that stronger tornadoes cause more fatalities (Agee and Taylor 2019; 660 

Anderson-Frey and Brooks 2019; Fricker 2020), cause more people to flee the building they are 661 

in (to find a safer location) (Ash et al. 2020; Casteel 2018), and are more likely to prompt a 662 

person to take protective action (Casteel 2018; Johnson et al. 2021). 663 

It is not surprising that the fatality rate was not sensitive to the time of day as there is much 664 

uncertainty on whether an agent will find themselves in the path of the tornado. We expected the 665 

fatality rate to be highest around 1700 LT when rush hour traffic would increase trip duration, 666 

and lowest between 0100 LT and 0500 LT when more people would be inside asleep. While the 667 

fatality rate was high at 1700 LT, we found the highest fatality rate at 2100 LT and high 668 

mortalities during the overnight hours. These results follow the findings in the literature which 669 

states that nocturnal tornadoes are more likely to cause fatalities (Ashley et al. 2008; Simmons 670 

and Sutter 2009), less likely to be warned (Anderson-Frey and Brooks 2021), and less likely to 671 

be responded to (Krocak et al. 2021; Mason et al. 2018) than those that occur during the day. 672 

Also, in the model, people are more likely to leave their homes to seek shelter elsewhere in the 673 

evening than during the day. This led to greater trip distances and durations putting the agents at 674 



greater risk and leading to a higher fatality rate. The increase in the duration during the day was 675 

due to increases in the likelihood of evacuation with more agents on the road traveling home 676 

from work. 677 

We expected shorter lead times to result in greater fatality rate as the agents would have less time 678 

to take protective action. It was interesting that the mean fatality rate was highest at a 5-minute 679 

lead time and the maximum value was highest at a 15-minute lead time. We believe that that the 680 

higher fatality rate at these times were because more agents had time to begin traveling which 681 

increased their risk by placing them outside or on the road. There is no physical reason why the 682 

mean trip duration should increase with lead time; however, we assume this increase is due to the 683 

increase in the number of agents responding. 684 

We expected the response rate to increase with lead time as the agents had more time to take 685 

action. These findings are in line with the literature which suggests that greater lead time results 686 

in fewer fatalities and greater response rates (Hoekstra et al. 2011; Simmons and Sutter 2008). In 687 

the model, lead time does not influence the decision-making process, it merely gives the agents 688 

longer to respond before the tornado arrives. This results in greater response rates for each 689 

increase in lead time. In reality, lead times longer than 15-30 minutes can result in people 690 

underestimating their risk and waiting until it is too late to respond (Simmons and Sutter 2008). 691 

We expected that increasing the number of residential shelters would reduce the fatality rate at 692 

least somewhat. It is not surprising that the difference is not significant as each agent can only go 693 

to a shelter in their own home no matter how many residential shelters exist. 694 

Our sensitivity tests showed that fatality rate, trip completion times, and response rates behave as 695 

expected with varying tornado intensities, lead times, and start times. We also showed that 696 



TWISTER ABM produces reasonable mortalities and travel times when compared to real world 697 

data.  698 

We found that both shelter-in-place scenarios (all responding agents shelter-in-place (Scenario 3) 699 

and everyone shelters-in-place (Scenario 6)) were in the bottom three in terms of fatality rate and 700 

mean completion times. Conversely, we found that both scenarios where agents traveled to 701 

FEMA-rated shelters (all responding agents seek shelter (Scenario 4) and all agents seek shelter 702 

(Scenario 7)) were the highest in terms of fatality rate with less than 25% of agents completing 703 

their trips to shelter. This suggests that shelter-in-place does indeed save lives (reduces fatalities 704 

by a factor of 6.6 compared to seeking shelter in a FEMA-rated shelter), while having many 705 

people travel to a limited number of shelters can cause traffic to slow down significantly and 706 

leave more people exposed in vehicles to an approaching tornado. Many communities in the state 707 

of Oklahoma, including Norman, have recognized this fact and closed all public shelters (Dean 708 

2013). Our finding that Scenario 8 (where no agents respond) had the second lowest fatality rate 709 

was concerning; however, the fact that most people stayed indoors in this scenario may explain 710 

why the fatality rate was so low. Studies have indicated that even in violent tornadoes, the per 711 

building fatality rate for destroyed one- to two-family homes is only 0.1% - 1.9% (Brooks et al. 712 

2008; Prevatt et al. 2012). Among the building types that the NWS uses as damage indicators, 713 

for its tornado damage surveys, only small barns and outbuildings and single-wide and double-714 

wide mobile homes suffer catastrophic damage in EF2 level winds (McDonald and Mehta 2006). 715 

Less than 5% of reported tornadoes between 1950 and 2020 have had maximum intensities 716 

greater than EF2 (SPC 2021) and of those only an estimated 7% (EF3) – 12% (EF5) of their 717 

damage path area experienced wind speeds exceeding 217 km/h (EF3+ level) (Ramsdell et al. 718 

2007). Despite the likelihood of death in mobile homes being considerably higher (15 – 20 times 719 



higher than for permanent homes according to studies by Brooks and Doswell (2002) and 720 

Simmons and Sutter (2010)),  it would not be surprising for most people in tornado-impacted 721 

buildings to survive given less than 0.1% of the city of Norman is zoned for mobile homes (City 722 

of Norman 2021).  723 

One limitation of this study is that in the model is that there is no distinction between agents who 724 

are indoors and seeking refuge and those who are just indoors. This distinction was omitted from 725 

the model as the authors are aware of no studies on indoor fatality rates that distinguish between 726 

those who were seeking refuge and those who were not. In reality, a person who is asleep in bed 727 

is likely at greater risk than someone who is seeking refuge in an interior room on the lowest 728 

level in the house. Studies on tornado-related fatality rate suggest that being struck by an object, 729 

thrown, or crushed by rubble are the leading causes of death in a tornado and these sorts of 730 

injuries are more likely when one is prone and near an exterior wall (Daley et al. 2005; Chiu et 731 

al. 2013). 732 

Another limitation of this study is in the damage indicator assignment method used for the 733 

building points dataset. We make a few simple assumptions regarding how the damage indicator 734 

relates to the building’s size and zoning classification. We chose a simple method for illustration 735 

purposes; however, more rigorous approaches (e.g., machine learning algorithms) could be 736 

applied to assess the damage indicator more accurately for each building in the study area. Kim 737 

et al. (2022) used a random forest algorithm to assess the building type for residential buildings 738 

in Oklahoma City, OK. Such a method could potentially be adapted to assess building types for 739 

other municipal zones (e.g., industrial, commercial) in other cities. While our approach was 740 

simple, we believe that, given that most buildings do not suffer maximum damage until they 741 

experience EF4+ level winds (McDonald and Mehta 2006) and most buildings in the model will 742 



not be destroyed until the wind speed reaches EF4 level, the building dataset is representative of 743 

the real world. Additionally, for simplicity, we assume that all non-residential buildings are open 744 

to the public at the time of the tornado. In reality, most commercial buildings are only open 745 

during certain hours of the day and other buildings, such as factories and government buildings, 746 

may not be open to the public at any time. We used this assumption as we had no information on 747 

building hours or the type of activity conducted within the buildings. Future studies may address 748 

this limitation by identifying the locations of businesses within the city of Norman to have a 749 

better idea of building availability.  750 

In the model runs for this study, agents can only shelter in a residential building it is their home. 751 

In reality, neighbors and friends will sometimes allow a person to shelter in their home or storm 752 

shelter. TWISTER ABM has the capability to extend residential shelter availability to include 753 

neighboring residences or random residences (to represent friends’ homes). Future studies will 754 

investigate how changing the residential shelter availability influences fatality rate. Such studies 755 

could determine if encouraging neighbors to open their homes could result in significantly fewer 756 

fatalities. The Tornado Warning-Induced Shelter, Travel, and Evacuation Response Agent-Based 757 

Model shows promise as a tool for studying travel behavior during tornado warnings. Our 758 

sensitivity tests showed that fatality rate, trip completion times, and response rates behave as 759 

expected with varying tornado intensities, lead times, and start times. We also showed that 760 

TWISTER ABM produces reasonable mortalities and travel times when compared to real world 761 

data. We used TWISTER ABM to quantify the value of the National Weather Service’s shelter-762 

in-place paradigm in saving lives. We believe that tools like TWISTER ABM can be used to 763 

better inform emergency managers on the risks and potential consequences of traveling when 764 



tornado warnings are active. Such knowledge can help emergency managers improve their 765 

planning with regard to opening public shelters and how they communicate risk to the public. 766 
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Tables 1037 

Table 1. Key variables for resident agents and their implementation in TWISTER ABM. 1038 

Variables Type Definition Notes 

age static Resident's age group 

Weighted random draw based 

on 2019 Norman population 

ethnicity static Resident's ethnic group 

Weighted random draw based 

on 2019 Norman population 

race static Resident's race 

Weighted random draw based 

on 2019 Norman population 

speed dynamic 

Resident's current speed 

(patches/tick) 

Varies when resident is on 

foot or in car 

dead? dynamic Resident's death status 

Binary flag (dead = true, alive 

= false) 

evacuated? dynamic Resident's evacuation status 

Binary flag (evacuated = true, 

not evacuated = false) 

max_ef dynamic 

Maximum wind speed experienced 

by resident 

Wind speed is reported as an 

EF level 

warn_rcv static 

Probability that the resident will 

recieve a warning 

Random normal draw based 

on WX Survey data 

warn_comp static 

Probability that the resident will 

understand a warning 

Random normal draw based 

on WX Survey data 

warn_resp static 

Probability that the resident will 

respond to a warning 

Random normal draw based 

on WX Survey data 

risk_life static 

Probability that resident will switch 

routes or destinations if passing 

close to a tornado 

Random normal draw with a 

mean of 50% and a standard 

deviation of 10% 

milltime static 

Milling time before the resident 

makes a decision (in seconds) 

Random normal draw from 

Durage et al. (2014) survey 

data 

action dynamic 

Protective action taken by the agent 

(e.g., Do Nothing, Evacuate) (string) 

Weighted random draw from 

WX Survey data 

evac_start dynamic 

Time when the resident started 

moving to shelter or evacuation 

point (in minutes)   

evac_end dynamic 

Time when the resident arrived at 

their destination (in minutes)   

evac_dur dynamic Duration of evacuation (in minutes)   

evac_dist dynamic 

Distance traveled to destination (in 

meters)   

location dynamic The resident's current location type 

Location types include car, 

outside, refuge, etc. 

 1039 
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Table 2. Key variables for tornado agents and their implementation in TWISTER ABM. 1041 

Variables Type Definition Notes 

ef0_radius static Radius of EF0 wind field (in patches) 

From Ramsdell and Rishel 

(2007) 

ef1_radius static Radius of EF1 wind field (in patches) 

From Ramsdell and Rishel 

(2007) 

ef2_radius static Radius of EF2 wind field (in patches) 

From Ramsdell and Rishel 

(2007) 

ef3_radius static Radius of EF3 wind field (in patches) 

From Ramsdell and Rishel 

(2007) 

ef4_radius static Radius of EF4 wind field (in patches) 

From Ramsdell and Rishel 

(2007) 

ef5_radius static Radius of EF5 wind field (in patches) 

From Ramsdell and Rishel 

(2007) 

speed static Speed of tornado (in patches/tick)   

path_len dynamic Length of tornado path (in km)   
 1042 
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Table 3. Standard parameter settings for TWISTER ABM. 1044 

Parameter Value 

Scenario 

Scenario 1 (everyone who responds 

to the warning seeks refuge, seeks 

shelter, or evacuates) 

Monte Carlo Simulations 20 

Time 1700 LT (on a weekday) 

Time Delay for Additional 

Background Traffic Agents 
10 s 

# of Agents 4000 

% of Residences with Shelter 10% 

# of Public Shelters 20 

Tornado Intensity EF5 

Tornado Width 1.6 km 

Tornado Speed 45.1 km/h 

Tornado Lead Time 15 min 

 1045 
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Table 4. Parameter settings and the corresponding values used in each sensitivity analysis.  1047 

Sensitivity Analysis Parameter Values 

Time of Day Time 

0100 LT, 0500 LT, 0900 

LT, 1200 LT, 1700LT, 2100 

LT 

Tornado Intensity 

Tornado Intensity 
EF0, EF1, EF2, EF3, EF4, 

EF5 

Tornado Width 
49.8 m, 154.5 m, 318.2 m, 

600.8 m, 872.3 m, 1414.6 m 

Tornado Lead Time Tornado Lead Time 
0 min, 5 min, 15 min, 30 

min, 45 min, 60 min 

Residential Shelter Availability 

(% of total Residential Buildings) 

% of Residences with 

Shelter 

1%, 5%, 10%, 20%, 40%, 

80% 

Public Shelter Availability (# of 

Buildings) 
# of Public Shelters 5, 20, 50, 200, 1000, 1800 

Source: Storm Prediction Center’s (SPC) SVRGIS (SPC 2021). 1048 
Mean tornado widths are for the period of 1995 to 2020. For the tornado intensity sensitivity test the tornado 1049 
intensity and tornado width parameters vary together simultaneously. 1050 
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Figure Captions 1052 

Fig. 1. The interface of the tornado warning-induced shelter, travel and evacuation response 1053 

agent-based model (TWISTER ABM) in NetLogo. 1054 

Note: The left panel contains the adjustable parameters for the simulations, including parameters 1055 

related to the number of residential and public shelters, parameters for the GM car-following 1056 

model, pedestrian speed, tornado intensity, width, and speed, and whether background traffic is 1057 

included in the simulation. A visualization of the simulation as it unfolds can be seen in the 1058 

center panel. The damage path of the tornado is represented by grey shading with darker color 1059 

cells experiencing higher wind speeds. A black tornado icon represents the current position of 1060 

the center of the tornado. Buildings are represented as squares with small squares corresponding 1061 

to buildings that are not FEMA-rated shelters (refuges) and large squares corresponding to 1062 

FEMA-rated shelters (shelters). Throughout the shape representing the agents changes as their 1063 

status changes. Small x’s represent fatalities. Flags represent agents who have successfully 1064 

completed their protective action. Circles represent agents who are monitoring the situaiton. 1065 

Triangles represent agents who are seeking refuge (small triangles) or seeking shelter (large 1066 

triangles). Arrow heads represent agents who are evacuating. The right panel shows simulation 1067 

results including the total number of fatalities by location, the percentage of agents evacuated by 1068 

protective action type, and the distribution of protective action completion times. 1069 

Fig. 2. Flowchart for typical TWISTER ABM model run.  1070 

Note: Model processes are the light grey rounded rectangles. Decisions are grey diamonds and 1071 

the protective action types are the dark grey rounded rectangles. 1072 

Fig. 3. Study area and location within Norman, Oklahoma.  1073 



Note: In panel (a), building points that are circles are buildings that do not have FEMA-rated 1074 

shelters (refuges) while ones that are triangles are buildings with FEMA-rated shelters (shelters). 1075 

Evacuation points are represented as squares and the local roads are the black lines. In panel (b), 1076 

we see the city of Norman, Oklahoma (shaded light grey) as well as the neighboring 1077 

communities (with Moore shaded in grey) with all primary and secondary roads as black lines. 1078 

The location of the study area within Norman is defined by the solid outline. (All map data is 1079 

from the U.S. Census Bureau (2010)). 1080 

Fig. 4. Snapshots of a TWISTER ABM simulation 1081 

Note: Each run begins with the issuance of a tornado warning (a) and ends with the tornado 1082 

passing out of the study area and dissipating (f). Panel a shows the initial distribution of the 1083 

agents (dots) based on the American Time Use Survey data for the hour of the simulation (1700 1084 

LT in this case). Agents are distributed to building locations, points outdoors, or points along the 1085 

road network. By 15 minutes (b and c), the tornado has formed outside the study area and many 1086 

agents have successfully completed their protective action (diamonds). By 24 minutes (c and d) 1087 

the tornado has advanced into the study area (its path is marked by the grey shaded cells with the 1088 

darker colors indicating stronger winds) and caused the first fatalities (x’s). The model run ends 1089 

with the tornado passing out of the study area and dissipating (f). 1090 

Fig. 5. Fatality rate for observed and simulated significant and violent tornadoes.  1091 

Note: Fatality rate is in fatalities per 1000 residents living in the path of the tornado. Observed 1092 

values are for tornadoes hitting within 100 km of Oklahoma during the 1995 – 2020 time period. 1093 

Fig. 6. Travel time comparison between TWISTER ABM and Google estimated travel times. 1094 



Note: Comparisons are for 0200 LT (a) and 1700 LT (b). Linear trend line with the regression 1095 

equation and Pearson’s correlation coefficient are added for reference. Estimated travel times are 1096 

calculated using the mapsapi R package (Dorman 2022) and the Google Directions API (Google 1097 

2022) with the best guess traffic model. 1098 

Fig. 7. Model sensitivity to tornado intensity and width.  1099 

Note: Sensitivity is measured by fatality rate (‰) (a), mean trip duration for trips to refuges, 1100 

shelters, or evacuation points (minutes) (b), and percentage of agents taking protective action (c). 1101 

Bold lines represent the median values. Boxes show the interquartile range (25th to 75th 1102 

percentiles) with whiskers extending to 1.5 times the interquartile range. 1103 

Fig. 8. Model sensitivity to time of day. 1104 

Note: All panels are as in Fig. 7. 1105 

Fig. 9. Model sensitivity to lead time. 1106 

Note: All panels are as in Fig. 7. 1107 

Fig. 10. Model sensitivity to residential shelter availability. 1108 

Note: All panels are as in Fig. 7. 1109 

Fig. 11. Model sensitivity to public shelter availability. 1110 

Note: All panels are as in Fig. 7. 1111 

Fig. 12. Sensitivity of model output to eight different protective action scenarios 1112 

Note: Measures include fatality rate (‰) (a), percentage of agents taking (triangles) and 1113 

completing (inverted triangles) protective action (b), mean completion time (time required to 1114 

reach the protective action destination) (minutes) (c), and the percentage of agents completing 1115 



their protective action within 15 minutes out of all agents (triangles) and out of those that 1116 

completed their protective action (inverted triangles) (d). Bold lines represent the median values. 1117 

Boxes show the interquartile range (25th to 75th percentiles) with whiskers extending to 1.5 times 1118 

the interquartile range. Scenarios are as follows: (1) everyone who responds to the warning 1119 

(responders) seeks refuge, seeks shelter, or evacuates, (2) all responders evacuate, (3), all 1120 

responders shelter-in-place, (4) all responders seek shelter only, (5) all agents evacuate, (6) all 1121 

agents shelter-in-place, (7) all agents seek shelter, (8) all agents do nothing. 1122 

 1123 



Figure1 Click here to access/download;Figure;Figure 1.tiff

https://www.editorialmanager.com/jrnnheng/download.aspx?id=156655&guid=31094750-557e-42cd-8b70-3d7adc096760&scheme=1
https://www.editorialmanager.com/jrnnheng/download.aspx?id=156655&guid=31094750-557e-42cd-8b70-3d7adc096760&scheme=1


Figure2 Click here to access/download;Figure;Figure2.tiff

https://www.editorialmanager.com/jrnnheng/download.aspx?id=156596&guid=c01053e2-d50b-47d1-a04f-b8b5ef47747f&scheme=1
https://www.editorialmanager.com/jrnnheng/download.aspx?id=156596&guid=c01053e2-d50b-47d1-a04f-b8b5ef47747f&scheme=1


Figure3 Click here to access/download;Figure;Figure3.tiff

https://www.editorialmanager.com/jrnnheng/download.aspx?id=156597&guid=0938cc15-78c4-4612-8489-58b3d80cb5e1&scheme=1
https://www.editorialmanager.com/jrnnheng/download.aspx?id=156597&guid=0938cc15-78c4-4612-8489-58b3d80cb5e1&scheme=1


Figure4 Click here to access/download;Figure;Figure4.tiff

https://www.editorialmanager.com/jrnnheng/download.aspx?id=156598&guid=3d0430a4-0832-4365-b143-b97a71e4453a&scheme=1
https://www.editorialmanager.com/jrnnheng/download.aspx?id=156598&guid=3d0430a4-0832-4365-b143-b97a71e4453a&scheme=1


Figure5 Click here to access/download;Figure;Figure5.tiff

https://www.editorialmanager.com/jrnnheng/download.aspx?id=156599&guid=e9ad5cdb-b221-4fb8-84bf-2f16c9c4357f&scheme=1
https://www.editorialmanager.com/jrnnheng/download.aspx?id=156599&guid=e9ad5cdb-b221-4fb8-84bf-2f16c9c4357f&scheme=1


Figure6 Click here to access/download;Figure;Figure6.tiff

https://www.editorialmanager.com/jrnnheng/download.aspx?id=156600&guid=5a3c5881-b734-4fa6-8990-31ce68da40bd&scheme=1
https://www.editorialmanager.com/jrnnheng/download.aspx?id=156600&guid=5a3c5881-b734-4fa6-8990-31ce68da40bd&scheme=1


Figure7 Click here to access/download;Figure;Figure7.tiff

https://www.editorialmanager.com/jrnnheng/download.aspx?id=156601&guid=7846e639-20b3-47ff-86ca-c10e84d6db87&scheme=1
https://www.editorialmanager.com/jrnnheng/download.aspx?id=156601&guid=7846e639-20b3-47ff-86ca-c10e84d6db87&scheme=1


Figure8 Click here to access/download;Figure;Figure8.tiff

https://www.editorialmanager.com/jrnnheng/download.aspx?id=156602&guid=9e4a74c1-5262-40e6-a75d-ba4d98d272e5&scheme=1
https://www.editorialmanager.com/jrnnheng/download.aspx?id=156602&guid=9e4a74c1-5262-40e6-a75d-ba4d98d272e5&scheme=1


Figure9 Click here to access/download;Figure;Figure9.tiff

https://www.editorialmanager.com/jrnnheng/download.aspx?id=156603&guid=72332445-4c08-428b-809a-253391caffc7&scheme=1
https://www.editorialmanager.com/jrnnheng/download.aspx?id=156603&guid=72332445-4c08-428b-809a-253391caffc7&scheme=1


Figure10 Click here to access/download;Figure;Figure10.tiff

https://www.editorialmanager.com/jrnnheng/download.aspx?id=156604&guid=28a6c3b4-7097-4b88-aae5-e706b7375731&scheme=1
https://www.editorialmanager.com/jrnnheng/download.aspx?id=156604&guid=28a6c3b4-7097-4b88-aae5-e706b7375731&scheme=1


Figure11 Click here to access/download;Figure;Figure11.tiff

https://www.editorialmanager.com/jrnnheng/download.aspx?id=156605&guid=b3125ac0-742c-4d13-867d-a2d32afaa754&scheme=1
https://www.editorialmanager.com/jrnnheng/download.aspx?id=156605&guid=b3125ac0-742c-4d13-867d-a2d32afaa754&scheme=1


Figure12 Click here to access/download;Figure;Figure12.tiff

https://www.editorialmanager.com/jrnnheng/download.aspx?id=156606&guid=583a549e-672c-46a4-980d-f19f31fb8434&scheme=1
https://www.editorialmanager.com/jrnnheng/download.aspx?id=156606&guid=583a549e-672c-46a4-980d-f19f31fb8434&scheme=1



